cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145390 Number of sublattices of index n of a centered rectangular lattice fixed by a reflection.

Original entry on oeis.org

1, 1, 2, 3, 2, 2, 2, 5, 3, 2, 2, 6, 2, 2, 4, 7, 2, 3, 2, 6, 4, 2, 2, 10, 3, 2, 4, 6, 2, 4, 2, 9, 4, 2, 4, 9, 2, 2, 4, 10, 2, 4, 2, 6, 6, 2, 2, 14, 3, 3, 4, 6, 2, 4, 4, 10, 4, 2, 2, 12, 2, 2, 6, 11, 4, 4, 2, 6, 4, 4, 2, 15, 2, 2, 6, 6, 4, 4, 2, 14, 5, 2, 2, 12, 4, 2, 4, 10, 2, 6, 4, 6, 4, 2, 4, 18, 2, 3, 6, 9, 2
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2009, Mar 13 2009

Keywords

Comments

a(n) is the Dirichlet convolution of A000012 and A098178. - Domenico (domenicoo(AT)gmail.com), Oct 21 2009

Crossrefs

Cf. A098178, A060594 (primitive sublattices only), A145391.

Programs

  • Maple
    nmax := 100 :
    L := [1,-1,0,2,seq(0,i=1..nmax)] :
    MOBIUSi(%) :
    MOBIUSi(%) ; # R. J. Mathar, Sep 25 2017
  • Mathematica
    m = 101; Drop[ CoefficientList[ Series[ Sum[(1 + Cos[n*Pi/2])*x^n/(1 - x^n), {n, 1, m}], {x, 0, m}], x], 1] (* Jean-François Alcover, Sep 20 2011, after formula *)
    f[p_, e_] := e+1; f[2, e_] := 2*e-1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    t1=direuler(p=2,200,1/(1-X)^2)
    t2=direuler(p=2,2,1-X+2*X^2,200)
    t3=dirmul(t1,t2)

Formula

Dirichlet g.f.: (1-2^(-s) + 2*4^(-s))*zeta^2(s).
G.f.: Sum_n (1 + cos(n*Pi/2)) x^n / (1 - x^n). - Domenico (domenicoo(AT)gmail.com), Oct 21 2009
If 4|n then a(n) = d(n) - d(n/2) + 2*d(n/4); else if 2|n then a(n) = d(n) - d(n/2); else a(n) = d(n); where d(n) is the number of divisors of n. [Rutherford] - Andrey Zabolotskiy, Mar 10 2018
a(n) = Sum_{ m: m^2|n } A060594(n/m^2). - Andrey Zabolotskiy, May 07 2018
Sum_{k=1..n} a(k) ~ n*(log(n) - 1 + 2*gamma - log(2)/2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 02 2019
Multiplicative with a(2^e) = 2*e-1 and a(p^e) = e+1 for an odd prime p. - Amiram Eldar, Aug 27 2023

Extensions

New name from Andrey Zabolotskiy, Mar 10 2018