cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145393 Number of inequivalent sublattices of index n in square lattice, where two sublattices are considered equivalent if one can be rotated or reflected to give the other, with that rotation or reflection preserving the parent square lattice.

This page as a plain text file.
%I A145393 #34 Jul 18 2019 01:14:01
%S A145393 1,2,2,4,3,5,3,7,5,7,4,11,5,8,8,12,6,13,6,15,10,11,7,21,10,13,12,18,9,
%T A145393 22,9,21,14,16,14,29,11,17,16,29,12,28,12,25,23,20,13,39,16,27,20,29,
%U A145393 15,34,20,36,22,25,16,50,17,26,29,38,24,40,18,36,26,40
%N A145393 Number of inequivalent sublattices of index n in square lattice, where two sublattices are considered equivalent if one can be rotated or reflected to give the other, with that rotation or reflection preserving the parent square lattice.
%C A145393 From _Andrey Zabolotskiy_, Mar 12 2018: (Start)
%C A145393 If reflections are not allowed, we get A145392. If any rotations and reflections are allowed, we get A054346.
%C A145393 The parent lattice of the sublattices under consideration has Patterson symmetry group p4mm, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145392 (p4), A145394 (p6), A003051 (p6mm).
%C A145393 Rutherford says at p. 161 that a(n) != A054346(n) only when A002654(n) > 2, but actually these two sequence differ at other terms, too, for example, at n = 30 (see illustration). (End)
%H A145393 Andrey Zabolotskiy, <a href="/A145393/b145393.txt">Table of n, a(n) for n = 1..10000</a>
%H A145393 Amihay Hanany, Domenico Orlando, and Susanne Reffert, <a href="https://doi.org/10.1007/JHEP06(2010)051">Sublattice counting and orbifolds</a>, High Energ. Phys., 2010 (2010), 51, <a href="https://arxiv.org/abs/1002.2981">arXiv.org:1002.2981 [hep-th]</a> (see table 6 and fig. 2).
%H A145393 John S. Rutherford, <a href="http://dx.doi.org/10.1107/S010876730804333X">Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type</a>, Acta Cryst. (2009). A65, 156-163. [See Table 2; beware the typo in a(5).]
%H A145393 Andrey Zabolotskiy, <a href="/A145392/a145392.pdf">Sublattices of the square lattice</a> (illustrations for n = 1..6, 15, 25)
%H A145393 <a href="/index/Su#sublatts">Index entries for sequences related to sublattices</a>
%H A145393 <a href="/index/Sq#sqlatt">Index entries for sequences related to square lattice</a>
%F A145393 a(n) = (A000203(n) + A002654(n) + A069735(n) + A145390(n))/4. [Rutherford] - _N. J. A. Sloane_, Mar 13 2009
%F A145393 G.f.: Sum_{ m>=1 } (1/((1-x^m)(1-x^(4m))) - 1). [Hanany, Orlando & Reffert, eq. (6.8)] - _Andrey Zabolotskiy_, Jul 05 2017
%F A145393 a(n) = Sum_{ m: m^2|n } A019590(n/m^2) + A157228(n/m^2) + A157226(n/m^2) + A157230(n/m^2) + A157231(n/m^2) = A053866(n) + A025441(n) + Sum_{ m: m^2|n } A157226(n/m^2) + A157230(n/m^2) + A157231(n/m^2). [Rutherford] - _Andrey Zabolotskiy_, May 07 2018
%F A145393 a(n) = Sum_{ d|n } A008621(d) = Sum_{ d|n } (1 + floor(d/4)). [From the above-given g.f.] - _Andrey Zabolotskiy_, Jul 17 2019
%t A145393 terms = 70;
%t A145393 CoefficientList[Sum[(1/((1-x^m)(1-x^(4m)))-1), {m, 1, terms}] + O[x]^(terms + 1), x] // Rest (* _Jean-François Alcover_, Aug 05 2018 *)
%Y A145393 Cf. A054345, A054346, A167156, A008621.
%Y A145393 Cf. A000203, A069734, A145391, A145392, A145394, A003051, A002324, A002654, A069735, A145390.
%Y A145393 Cf. A019590, A157228, A157226, A157230, A157231, A053866, A025441.
%K A145393 nonn
%O A145393 1,2
%A A145393 _N. J. A. Sloane_, Feb 23 2009
%E A145393 New name from _Andrey Zabolotskiy_, Mar 12 2018