cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145396 a(n) = Sum_{d|n} sigma(d) + 3*Sum_{2c|n} sigma(c).

Original entry on oeis.org

1, 7, 5, 23, 7, 35, 9, 59, 18, 49, 13, 115, 15, 63, 35, 135, 19, 126, 21, 161, 45, 91, 25, 295, 38, 105, 58, 207, 31, 245, 33, 291, 65, 133, 63, 414, 39, 147, 75, 413, 43, 315, 45, 299, 126, 175, 49, 675, 66, 266, 95, 345, 55, 406, 91, 531, 105, 217, 61, 805, 63, 231, 162, 607
Offset: 1

Views

Author

N. J. A. Sloane, Mar 13 2009

Keywords

Comments

Dirichlet convolution of [1,3,0,0,0,0,0,...] and A007429.

Crossrefs

Cf. A007429.

Programs

  • Maple
    with(numtheory);
    g:=proc(n)
    local d,c,b,t0,t1,t2,t3;
    t1:=divisors(n);
    t0:=add( sigma(d), d in t1);
    t2:=0;
    for d in t1 do if d mod 2 = 0 then t2:=t2+sigma(d/2); fi; od:
    t0+3*t2;
    end;
    [seq(g(n),n=1..100)];
    # alternative
    nmax := 100 :
    L27 := [seq(i,i=1..nmax) ];
    L := [1,3,seq(0,i=1..nmax)] ;
    MOBIUSi(%) ;
    MOBIUSi(%) ;
    DIRICHLET(%,L27) ; # R. J. Mathar, Sep 25 2017
  • Mathematica
    a[n_] := Sum[DivisorSigma[1, d] + 3 Boole[Mod[d, 2] == 0] DivisorSigma[1, d/2], {d, Divisors[n]}];
    Array[a, 100] (* Jean-François Alcover, Apr 04 2020 *)
    f[p_, e_] := (p*(p^(e + 1) - 1) - (p - 1)*(e + 1))/(p - 1)^2; f[2, e_] := 5*2^(e + 1) - 4*e - 9; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 25 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, 5*2^(f[i,2]+1) - 4*f[i,2] - 9,  (f[i,1]*(f[i,1]^(f[i,2]+1)-1) - (f[i,1]-1)*(f[i,2]+1))/(f[i,1]-1)^2)); } \\ Amiram Eldar, Oct 25 2022

Formula

Dirichlet g.f.: (1+3/2^s)*zeta(s-1)*(zeta(s))^2.
From Amiram Eldar, Oct 25 2022: (Start):
Multiplicative with a(2^e) = 5*2^(e+1)-4*e-9, and a(p^e) = (p*(p^(e+1)-1) - (p-1)*(e+1))/(p-1)^2 if p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 7*Pi^4/288 = 2.367582... . (End)