This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145402 #10 Feb 10 2020 12:54:40 %S A145402 1,32,336,3610,26996,229348,1620034,12071462,82550864,572479244, %T A145402 3808019582,25304433030,164452629818,1062773834046,6777328517896, %U A145402 42944798886570,269706791277978,1683956271732804,10445800698724066,64470330298173718,395897522698282286 %N A145402 Number of Hamiltonian paths in P_6 X P_n. %D A145402 F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154. %H A145402 Andrew Howroyd, <a href="/A145402/b145402.txt">Table of n, a(n) for n = 1..200</a> %H A145402 F. Faase, <a href="http://www.iwriteiam.nl/Cpaper.zip">On the number of specific spanning subgraphs of the graphs G X P_n</a>, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154. %H A145402 F. Faase, <a href="http://www.iwriteiam.nl/counting.html">Counting Hamiltonian cycles in product graphs</a>. %H A145402 F. Faase, <a href="http://www.iwriteiam.nl/Cresults.html">Results from the counting program</a> %H A145402 A. Kloczkowski, and R. L. Jernigan, <a href="https://doi.org/10.1063/1.477128">Transfer matrix method for enumeration and generation of compact self-avoiding walks. I. Square lattices</a>, The Journal of Chemical Physics 109, 5134 (1998); doi: 10.1063/1.477128. %F A145402 Recurrence: %F A145402 a(1) = 1, %F A145402 a(2) = 32, %F A145402 a(3) = 336, %F A145402 a(4) = 3610, %F A145402 a(5) = 26996, %F A145402 a(6) = 229348, %F A145402 a(7) = 1620034, %F A145402 a(8) = 12071462, %F A145402 a(9) = 82550864, %F A145402 a(10) = 572479244, %F A145402 a(11) = 3808019582, %F A145402 a(12) = 25304433030, %F A145402 a(13) = 164452629818, %F A145402 a(14) = 1062773834046, %F A145402 a(15) = 6777328517896, %F A145402 a(16) = 42944798886570, %F A145402 a(17) = 269706791277978, %F A145402 a(18) = 1683956271732804, %F A145402 a(19) = 10445800698724066, %F A145402 a(20) = 64470330298173718, %F A145402 a(21) = 395897522698282286, %F A145402 a(22) = 2420749668624155028, %F A145402 a(23) = 14741571247786709466, %F A145402 a(24) = 89447754587186752880, %F A145402 a(25) = 540909580270642216184, %F A145402 a(26) = 3260975024920004797886, %F A145402 a(27) = 19603264739475883828250, %F A145402 a(28) = 117535292246105965344402, %F A145402 a(29) = 702983297060391275320674, %F A145402 a(30) = 4195042347314462259387726, %F A145402 a(31) = 24980876927077036352497846, %F A145402 a(32) = 148464009996932386776347700, %F A145402 a(33) = 880707004017612847924259248, %F A145402 a(34) = 5215420679738577795138490934, %F A145402 a(35) = 30834760633856575156452382482, %F A145402 a(36) = 182023498007552212356684065702, %F A145402 a(37) = 1072972236367114378051620861906, %F A145402 a(38) = 6316249249418550181323339914312, %F A145402 a(39) = 37134062572498215721937773361536, %F A145402 a(40) = 218051132007975699439608964043686, %F A145402 a(41) = 1278924289541599039994748939762698, %F A145402 a(42) = 7493036503222763128308036204327090, %F A145402 a(43) = 43855232912288598091280957567317138, %F A145402 a(44) = 256423555783154700433887417619421624, %F A145402 a(45) = 1497918400614505853772957830953728084, %F A145402 a(46) = 8742417758783236009320473613706164242, %F A145402 a(47) = 50980753991185396911892104402542597300, %F A145402 a(48) = 297049767387363496159117043578774571768, %F A145402 a(49) = 1729483126062016056698341476811920043190, %F A145402 a(50) = 10061957740464282187277644019379162526042, %F A145402 a(51) = 58498089362489651097823398471920941376576, %F A145402 a(52) = 339865477124939798823285486749575905998484, %F A145402 a(53) = 1973290245189981312766904756242136209547628, %F A145402 a(54) = 11449989363254903809753791687579863537639720, %F A145402 a(55) = 66398822904132302559004628977298456048581670, %F A145402 a(56) = 384828501289828058123250759256477195017480544, %F A145402 a(57) = 2229130151423292359561588373019497378537925992, %F A145402 a(58) = 12905482139945922274784040177595268953037073624, %F A145402 a(59) = 74677955664287358865759062006694983588023954498, %F A145402 a(60) = 431915003338650359662602332507443189042771688396, %F A145402 a(61) = 2496891766448143216725256893169977311172853631046, %F A145402 a(62) = 14427934830066558764818145273279632345264418663372, %F A145402 a(63) = 83333332226513722399850184075678751393221737658288, %F A145402 a(64) = 481116428456080286842307490567864574954881424751814, %F A145402 a(65) = 2776546160822559430889344961278132230852625276213456, %F A145402 a(66) = 16017287920159426224268234271939994702068236683096952, %F A145402 a(67) = 92365173104462405690384888989423493983021289807825804, %F A145402 a(68) = 532437005265425572947418165685557519144407566379788188, %F A145402 a(69) = 3068133207157035228673454978373479636659816379514577634, %F A145402 a(70) = 17673852322813372031623824236311245801227744874201505726, %F A145402 a(71) = 101775693863391958840045017910039901591690632344440430420, %F A145402 a(72) = 585891711340413211170711537425939102874247508518247861486, %F A145402 a(73) = 3371750713444109990037815937074468501619571038412857335812, %F A145402 a(74) = 19398251338784221478821801406177362259804056900563670388806, %F A145402 a(75) = 111568795166378500936134915873346624423853693744624963980094, %F A145402 a(76) = 641504617998364195219904173061021504434944205595353347826434, %F A145402 a(77) = 3687545584633992227002524686539727550037079894386915761864398, %F A145402 a(78) = 21191373465544351313564008839832091162448835237173224697058876, %F A145402 a(79) = 121749810823805837552440067819429634654060015970691974416839648, %F A145402 a(80) = 699307545280466430615312828047674566576438562745475964475819206, %F A145402 a(81) = 4015706643021649684623778140868657341335861754220230902896008358, %F A145402 a(82) = 23054334076887448042148612357995502957762056159889516154348493888, %F A145402 a(83) = 132325303284215702408282792115957397429549544294052046667316933024, %F A145402 a(84) = 759338970645831460803214242692994927457861759055035612014096168552, %F A145402 a(85) = 4356458805495707975500370782695432571275910254201456402839379528946, %F A145402 a(86) = 24988444359124623229107744283670243331720724254595280823991552991342, %F A145402 a(87) = 143302897934402302882116650096754970142662529653753598056050316770284, %F A145402 a(88) = 821643145225604646061901571450963815349943846407622019407540341354616, %F A145402 a(89) = 4710058370878465868959527620867955712709564866281083454929514852175614, %F A145402 a(90) = 26995186184460869210022072263346128180529395341521512801342492720405190, %F A145402 a(91) = 154691149154274176889598244154350780798358396944900226522881927956659924, %F A145402 a(92) = 886269379919108177564957910048500536178199765464663501388525940521397992, %F A145402 a(93) = 5076789215691537669631156752154537081293123676966123332888421538853542472, %F A145402 a(94) = 29076191843316870247359219485871781206517693488359111690563685979512648414, %F A145402 a(95) = 166499432361553419788395309422566612182648297248726066041877141415208791710, %F A145402 a(96) = 953271470509106369243543177926418983012312059921495414261416813755999417854, %F A145402 a(97) = 5456959733549075872001836202918114004175794416738296412041775876328443267258, %F A145402 a(98) = 31233227754487763526217128218054510752349852159351550242516916958065672040014, %F A145402 a(99) = 178737857335396135203660185992957708646273101994964328871350864581662287530370, %F A145402 a(100) = 1022707236608978622068432717505248432291457856084068284186568399312410331810432, %F A145402 a(101) = 5850900383513940954015281710556649941940025405781617483344419093753387423268476, %F A145402 a(102) = 33468181433150354888869904159114084742899324754034502110186114491065110022122200, %F A145402 a(103) = 191417198969507319320956593661939446623346523402513085476986313087536811166538340, %F A145402 a(104) = 1094638153860869625943819331139931221040188338780796056412326567943248472793958802, %F A145402 a(105) = 6258961737381454735273349796913292077792628144412979236476938336513611161598106484, %F A145402 a(106) = 35783051128420195492190011308019977156783612836787052747056431871076609691613022114, %F A145402 a(107) = 204548842309454453799711455219719889854673842730363951318743553233576097299212795442, %F A145402 a(108) = 1169129062568797296815375785441355037443753860572032657679922002274550424865242854058, %F A145402 a(109) = 6681512935985943406141450744800377135890211100687009159899691906982317042322945933878, %F A145402 a(110) = 38179937649795944235517484796055369991364169688382876782534932718852621580273012573744, %F A145402 a(111) = 218144739304402718284564940871623373450822675202683480252794642639223263633040021474644, %F A145402 a(112) = 1246247939027939105743088329254213268501907434596141236813634178402005420740542450380628, %F A145402 a(113) = 7118940481078978742024557769284517384845837781593976384711468911293459232187437799337060, %F A145402 a(114) = 40661037989804834153982399053378750204939616883988496050793347784222242778432371696180884, %F A145402 a(115) = 232217375173896510618659626810822796515204095972361739279486086828120095100766924292818294, %F A145402 a(116) = 1326065718326514761447186285188646030881583149366368223603447347470451333312359990991549570, and %F A145402 a(n) = 33a(n-1) - 393a(n-2) + 1170a(n-3) + 16754a(n-4) - 164617a(n-5) %F A145402 + 168322a(n-6) + 4799822a(n-7) - 23163595a(n-8) - 37721142a(n-9) + 600188299a(n-10) %F A145402 - 961703543a(n-11) - 7272206245a(n-12) + 30652525711a(n-13) + 27150112504a(n-14) - 406244319529a(n-15) %F A145402 + 480827117765a(n-16) + 2953483339807a(n-17) - 8985485328915a(n-18) - 8726841020211a(n-19) + 76359542983674a(n-20) %F A145402 - 51411687550669a(n-21) - 383142786980539a(n-22) + 769376710831963a(n-23) + 983504604086104a(n-24) - 4703988662134811a(n-25) %F A145402 + 1019144283245342a(n-26) + 17567564471258435a(n-27) - 21628609429447372a(n-28) - 39047561134742949a(n-29) + 105510774111014965a(n-30) %F A145402 + 21549266915229072a(n-31) - 312479090849851496a(n-32) + 203108186553616885a(n-33) + 603350961560577622a(n-34) - 932935395828098489a(n-35) %F A145402 - 616494505988563931a(n-36) + 2354671848385377084a(n-37) - 440129521587803560a(n-38) - 4025074369990975795a(n-39) + 3383359137577459958a(n-40) %F A145402 + 4524502583073183363a(n-41) - 8084316522568907228a(n-42) - 2000061549048744508a(n-43) + 12710939428078341415a(n-44) - 4333420899536278176a(n-45) %F A145402 - 14287280072219346302a(n-46) + 12897812849694072664a(n-47) + 10635043132409181759a(n-48) - 20121836247512783757a(n-49) - 2202029990005820642a(n-50) %F A145402 + 22530069641124845960a(n-51) - 7891916625415123185a(n-52) - 18920106775493172422a(n-53) + 15668168834118829712a(n-54) + 10967729897465381103a(n-55) %F A145402 - 18494624437114481188a(n-56) - 2065202418569179366a(n-57) + 16226881294479560421a(n-58) - 4583751833861649976a(n-59) - 10856722405314168245a(n-60) %F A145402 + 7442713492418171069a(n-61) + 5123463906533577867a(n-62) - 6977981353490105342a(n-63) - 1007944379242231618a(n-64) + 4832178425594778403a(n-65) %F A145402 - 966351046903429852a(n-66) - 2583974909058260734a(n-67) + 1371059307640140741a(n-68) + 1025598109986396178a(n-69) - 1054651664720734468a(n-70) %F A145402 - 224161153417985705a(n-71) + 604947327252110406a(n-72) - 68469700394312381a(n-73) - 269654457078878847a(n-74) + 111988757467772581a(n-75) %F A145402 + 87394849743853131a(n-76) - 74501889603770590a(n-77) - 14209663463684077a(n-78) + 34158937071201779a(n-79) - 4582941944236689a(n-80) %F A145402 - 11444460858858639a(n-81) + 5000095099800696a(n-82) + 2563966731017246a(n-83) - 2451346143506823a(n-84) - 130306682773908a(n-85) %F A145402 + 826961146658453a(n-86) - 208781411975348a(n-87) - 184972404092705a(n-88) + 118414958556749a(n-89) + 13754378300437a(n-90) %F A145402 - 35837701864283a(n-91) + 8178737057414a(n-92) + 5877631567661a(n-93) - 3755468753597a(n-94) - 22088646996a(n-95) %F A145402 + 749500012384a(n-96) - 234388451540a(n-97) - 54941696376a(n-98) + 54134588620a(n-99) - 8377519672a(n-100) %F A145402 - 4771746736a(n-101) + 2428864324a(n-102) - 169609016a(n-103) - 198646044a(n-104) + 72401124a(n-105) %F A145402 - 3896980a(n-106) - 4402412a(n-107) + 1505256a(n-108) - 152572a(n-109) - 37876a(n-110) %F A145402 + 17344a(n-111) - 3248a(n-112) + 336a(n-113) - 16a(n-114). %Y A145402 Row n=6 of A332307. %K A145402 nonn %O A145402 1,2 %A A145402 _N. J. A. Sloane_, Feb 03 2009 %E A145402 Terms a(20) and beyond from _Andrew Howroyd_, Feb 10 2020