A145420 Decimal expansion of Sum_{k>=2} 1/(k*(log k)^4).
2, 5, 5, 9, 1, 1, 9, 7, 4, 2, 9, 8, 6, 7, 3, 1, 4, 1, 8, 5, 7, 2, 0, 2, 0, 9, 7, 0, 3, 1, 0, 7, 6, 2, 9, 3, 3, 6, 1, 9, 1, 7, 8, 1, 5, 6, 3, 6, 6, 8, 7, 9, 4, 8, 7, 1, 7, 0, 6, 7, 9, 7, 0, 7, 9, 1, 4, 6, 5, 9, 0, 9, 8, 1, 6, 6, 1, 7, 1, 7, 6, 6, 5, 9, 3, 7, 9, 5, 9, 9, 2, 4, 9, 0, 3, 2, 1, 3, 8, 3, 5, 5, 4, 5, 8
Offset: 1
Examples
2.5591197429867314185720209703107629336191781563668...
Links
- R. J. Mathar, The series limit of sum_k 1/[k log k (log log k)^2], arXiv:0902.0789 [math.NA], 2009-2021, last sentence.
- Wikipédia, Série de Bertrand (in French).
Programs
-
Mathematica
(* Computation needs a few minutes *) digits = 105; NSum[ 1/(n*Log[n]^4), {n, 2, Infinity}, NSumTerms -> 800000, WorkingPrecision -> digits + 5, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 10}}] // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Feb 12 2013 *)
Extensions
More terms from Jean-François Alcover, Feb 12 2013
Comments