cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145434 Decimal expansion of Sum_{n>=1} (-1)^(n-1)*n^2/binomial(2n,n).

This page as a plain text file.
%I A145434 #30 Feb 24 2022 07:27:34
%S A145434 1,2,5,5,6,7,2,8,4,7,2,2,8,7,9,6,7,6,8,8,8,8,4,5,3,4,1,3,6,3,9,5,1,5,
%T A145434 6,5,9,6,6,0,3,4,3,4,5,3,9,6,7,7,6,8,2,7,6,1,9,4,3,9,5,1,1,6,8,0,5,9,
%U A145434 5,1,0,2,7,6,3,1,0,9,4,4,3,0,9,1,0,8,0,7,7,8,8,2,4
%N A145434 Decimal expansion of Sum_{n>=1} (-1)^(n-1)*n^2/binomial(2n,n).
%C A145434 The numerator in the Apelblat table lacks the square (typo).
%D A145434 Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.40.
%H A145434 Steven Finch, <a href="/A145433/a145433.pdf">Central Binomial Coefficients</a> [Cached copy, with permission of the author]
%F A145434 Equals 4*(5-A002163*A002390)/125.
%e A145434 0.125567284722879676...
%p A145434 evalf( 4/25-4/125*5^(1/2)*log(1/2+1/2*5^(1/2)), 120) ;
%t A145434 RealDigits[HypergeometricPFQ[{2, 2, 2}, {1, 3/2}, -1/4]/2, 10, 93] // First
%t A145434 (* or *) RealDigits[4/25 - 4*Sqrt[5]*Log[GoldenRatio]/125, 10, 93] // First (* _Jean-François Alcover_, Feb 13 2013, updated Oct 27 2014 *)
%Y A145434 Cf. A002163, A002390, A145433.
%K A145434 cons,easy,nonn
%O A145434 0,2
%A A145434 _R. J. Mathar_, Feb 08 2009