A145444 Dirichlet g.f.: (1+3/4^s+2/8^s)*zeta(s)^3.
1, 3, 3, 9, 3, 9, 3, 21, 6, 9, 3, 27, 3, 9, 9, 39, 3, 18, 3, 27, 9, 9, 3, 63, 6, 9, 10, 27, 3, 27, 3, 63, 9, 9, 9, 54, 3, 9, 9, 63, 3, 27, 3, 27, 18, 9, 3, 117, 6, 18, 9, 27, 3, 30, 9, 63, 9, 9, 3, 81, 3, 9, 18, 93, 9, 27, 3, 27, 9, 27, 3, 126, 3, 9, 18, 27, 9, 27, 3, 117, 15, 9, 3, 81, 9, 9, 9, 63
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- J. S. Rutherford, The enumeration and symmetry-significant properties of derivative lattices, Acta Cryst. A48 (1992), 500-508. See Table 1, symmetry Cmmm.
Programs
-
Maple
nmax := 10000 : L := [1,0,0,3,0,0,0,2,seq(0,i=1..nmax)] : MOBIUSi(%) : MOBIUSi(%) : MOBIUSi(%) ; # R. J. Mathar, Sep 25 2017
-
Mathematica
f[p_, e_] := (e + 1)*(e + 2)/2; f[2, e_] := 3*(e - 1)*e + 3; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 25 2022 *)
-
PARI
t1=direuler(p=2,200,1/(1-X)^3) t2=direuler(p=2,2,1+3*X^2+2*X^3,200) t3=dirmul(t1,t2)
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, 3*(f[i,2]-1)*f[i,2]+3, (f[i,2]+1)*(f[i,2]+2)/2)); } \\ Amiram Eldar, Oct 25 2022
Formula
From Amiram Eldar, Oct 25 2022: (Start):
Multiplicative with a(2^e) = 3*(e-1)*e+3 for e > 0, and a(p^e) = (e+1)*(e+2)/2 if p > 2.
Comments