A145462 Eigentriangle, row sums = the Padovan sequence, A000931.
1, 1, 1, -1, 1, 2, 0, -1, 2, 2, 1, 0, -2, 2, 3, -1, 1, 0, -2, 3, 4, 0, -1, 2, 0, -3, 4, 5, 1, 0, -2, 2, 0, -4, 5, 7, -1, 1, 0, -2, 3, 0, -5, 7, 9, 0, -1, 2, 0, -3, 4, 0, -7, 9, 12, 1, 0, -2, 2, 0, -4, 5, 0, -9, 12, 16, -1, 1, 0, -2, 3, 0, -5, 7, 0, -12, 16, 21
Offset: 6
Examples
First few rows of the triangle = 1; 1, 1; -1, 1, 2; 0, -1, 2, 2; 1, 0, -2, 2, 3; -1, 1, 0, -2, 3, 4; 0, -1, 2, 0, -3, 4, 5; 1, 0, -2, 2, 0, -4, 5, 7; -1, 1, 0, -2, 3, 0, -5, 7, 9; 0, -1, 2, 0, -3, 4, 0, -7, 9, 12; 1, 0, -2, 2, 0, -4, 5, 0, -9, 12, 16; ... Example: Row 10 = (1, 0, -2, 2, 3) with A000931(10) = 3, rightmost term. This row = the termwise products of (1, 0, -1, 1, 1) and (1, 1, 2, 2, 3); where the Padovan sequence starting with offset 6 = (1, 1, 2, 2, 3, 4, 5, 7, 9,...).
Formula
Triangle read by rows, T(n,k) = M * (A000931 * 0^(n-k)). M = an infinite lower triangular matrix with A106510 in every column: (1, 1, -1, 0, 1, -1, 0, 1, -1,...); and A000931 is a diagonalized infinite lower triangular matrix with the Padovan sequence starting with offset 6: (1, 1, 2, 2, 3, 4, 5, 7, 9,...) as the main diagonal and the rest zeros.
Comments