This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145471 #21 Sep 08 2022 08:45:38 %S A145471 5,17,29,41,53,89,101,113,137,173,197,257,269,293,353,389,449,461,509, %T A145471 521,557,617,701,761,773,797,857,881,929,953,977,1013,1109,1181,1193, %U A145471 1229,1277,1289,1301,1361,1433,1481,1613,1637,1709,1721,1877,1889,1901 %N A145471 Primes p such that (5+p)/2 is prime. %C A145471 All these primes are congruent to 1 mod 4 and to 5 mod 12. %H A145471 Robert Israel, <a href="/A145471/b145471.txt">Table of n, a(n) for n = 1..10000</a> %F A145471 a(n) = 2*A063909(n)-5. - _Robert Israel_, Feb 24 2016 %p A145471 select(t -> isprime(t) and isprime((t+5)/2), [seq(i, i=5..1000, 12)]); # _Robert Israel_, Feb 24 2016 %t A145471 aa = {}; k = 5; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, Prime[n]]], {n, 1, 500}];aa %t A145471 Select[Prime[Range[500]],PrimeQ[(5+#)/2]&] (* _Harvey P. Dale_, Apr 23 2011 *) %o A145471 (PARI) forprime(p=2,1e4,if(p%12!=5,next);if(isprime(p\2+3),print1(p", "))) \\ _Charles R Greathouse IV_, Jul 16 2011 %o A145471 (Magma) [p: p in PrimesInInterval(3,2000) | IsPrime((5+p) div 2)]; // _Vincenzo Librandi_, Feb 25 2016 %Y A145471 Cf. A063909, A092109. %Y A145471 Subsequence of A040117. - _Zak Seidov_, Feb 21 2016 %K A145471 nonn %O A145471 1,1 %A A145471 _Artur Jasinski_, Oct 11 2008