This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145480 #10 Jan 23 2017 13:06:29 %S A145480 37,97,109,157,181,241,277,349,409,421,577,661,709,757,829,877,937, %T A145480 1009,1117,1201,1249,1381,1429,1609,1621,1669,1777,1801,2029,2089, %U A145480 2137,2221,2269,2389,2437,2521,2557,2617,2857,3049,3061,3121,3181,3217,3301,3361 %N A145480 Primes p such that (p+37)/2 is prime. %C A145480 All these primes are congruent to 1 mod 12 %H A145480 Harvey P. Dale, <a href="/A145480/b145480.txt">Table of n, a(n) for n = 1..1000</a> %F A145480 a(n) >> n log^2 n. - _Charles R Greathouse IV_, Jan 23 2017 %t A145480 aa = {}; k = 37; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, Prime[n]]], {n, 1, 500}];aa %t A145480 Select[Prime[Range[500]],PrimeQ[(37+#)/2]&] (* _Harvey P. Dale_, Jun 23 2016 *) %o A145480 (PARI) list(n)=my(t=1, p, i=1); while(i<n, p=prime(i); i=i+1; if(p>2&&isprime((37+p)/2), print(p,", "))) \\_Anders Hellström_, Jan 23 2017 %o A145480 (PARI) list(lim)=my(v=List()); forprime(p=3,lim, if(isprime((p+37)/2), listput(v,p))); Vec(v) \\ _Charles R Greathouse IV_, Jan 23 2017 %Y A145480 A092109, A145471-A145480. %K A145480 nonn,easy %O A145480 1,1 %A A145480 _Artur Jasinski_, Oct 11 2008