This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145495 #30 Aug 19 2018 09:36:10 %S A145495 1,84,27720,13693680,5354228880,2489716429200,1010824870255200, %T A145495 459492105307435200,189737418627305920800,85223723866764909426000, %U A145495 35532611270849849570013600,15842376246977818384652245440,6646596943618421076833646609600,2948532659526725719238433845966400 %N A145495 Coefficients of certain power series associated with Atkin polynomials (see Kaneko-Zagier reference for precise definition). %H A145495 Seiichi Manyama, <a href="/A145495/b145495.txt">Table of n, a(n) for n = 0..379</a> %H A145495 M. Kaneko and D. Zagier, <a href="http://www2.math.kyushu-u.ac.jp/~mkaneko/papers/atkin.pdf">Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials</a>, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998 %F A145495 From _Seiichi Manyama_, Aug 19 2018: (Start) %F A145495 a(n) = (6*n+1)!/((n-1)!*(2*n)!*(3*n)!*(6*n+(-1)^n)) for n > 0. %F A145495 a(n) = 12*(6*n-6+(-1)^(n-1))*(6*n+(-1)^(n-1))*a(n-1)/((n-1)*n) for n > 1. (End) %e A145495 From _Seiichi Manyama_, Aug 19 2018: (Start) %e A145495 Phi_0(t)/1 = 1 + 120*t + 83160*t^2 + ... (See A001421). %e A145495 Phi_1(t)/(84*t) = 1 + 450*t + 394680*t^2 + ... (See A145492). %e A145495 Phi_2(t)/(27720*t^2) %e A145495 = (1 + 450*t + 394680*t^2 + ... - (1 + 120*t + 83160*t^2 + ... ))/(330*t) %e A145495 = 1 + 944*t + 1054170*t^2 + ... (See A145493). %e A145495 Phi_3(t)/(13693680*t^3) %e A145495 = (1 + 944*t + 1054170*t^2 + ... - (1 + 450*t + 394680*t^2 + ... ))/(494*t) %e A145495 = 1 + 1335*t + 1757970*t^2 + ... (See A145494). %e A145495 Phi_4(t)/(5354228880*t^4) %e A145495 = (1 + 1335*t + 1757970*t^2 + ... - (1 + 944*t + 1054170*t^2 + ... ))/(391*t) %e A145495 = 1 + 1800*t + 2783760*t^2 + ... . %e A145495 Phi_5(t)/(2489716429200*t^5) %e A145495 = (1 + 1800*t + 2783760*t^2 + ... - (1 + 1335*t + 1757970*t^2 + ... ))/(465*t) %e A145495 = 1 + 2206*t + 3863952*t^2 + ... . %e A145495 Phi_6(t)/(1010824870255200*t^6) %e A145495 = (1 + 2206*t + 3863952*t^2 + ... - (1 + 1800*t + 2783760*t^2 + ... ))/(406*t) %e A145495 = 1 + 18624/7*t + 36827541/7*t^2 + ... . %e A145495 Phi_7(t)/(459492105307435200*t^6) %e A145495 = (1 + 18624/7*t + 36827541/7*t^2 + ... - (1 + 2206*t + 3863952*t^2 + ... ))/((3182/7)*t) %e A145495 = 1 + (6147/2)*t + 6715687*t^2 + ... . (End) %Y A145495 Cf. A001421, A145492, A145493, A145494. %K A145495 nonn %O A145495 0,2 %A A145495 _N. J. A. Sloane_, Feb 28 2009 %E A145495 More terms from _Seiichi Manyama_, Aug 19 2018