This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145501 #16 Oct 25 2022 02:37:30 %S A145501 1,3,3,7,3,9,3,13,6,9,3,21,3,9,9,25,3,18,3,21,9,9,3,39,6,9,10,21,3,27, %T A145501 3,43,9,9,9,42,3,9,9,39,3,27,3,21,18,9,3,75,6,18,9,21,3,30,9,39,9,9,3, %U A145501 63,3,9,18,67,9,27,3,21,9,27,3,78,3,9,18,21,9,27,3,75,15,9,3,63,9,9,9,39,3 %N A145501 Dirichlet g.f.: (1+1/4^s+4/16^s)*zeta(s)^3. %C A145501 Dirichlet convolution of [1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,0,0,...] with A007425. %H A145501 Antti Karttunen, <a href="/A145501/b145501.txt">Table of n, a(n) for n = 1..10000</a> %H A145501 J. S. Rutherford, <a href="https://doi.org/10.1107/S0108767392000898">The enumeration and symmetry-significant properties of derivative lattices</a>, Acta Cryst. A48 (1992), 500-508. See Table 1, Bravais lattice / symmetry Immm. %F A145501 From _Amiram Eldar_, Oct 25 2022: (Start): %F A145501 Multiplicative with a(2) = 3, a(2^e) = 3*(e-2)*(e-1)+7 for e > 1, and a(p^e) = (e+1)*(e+2)/2 if p > 2. %F A145501 Sum_{k=1..n} a(k) ~ (3/4)*n*log(n)^2 + c_1*n*log(n) + c_2*n, where c_1 = 9*gamma/2 - 3*log(2)/2 - 3/2 and c_2 = 3/2 + 9*gamma*(gamma-1)/2 - 9*gamma*log(2)/2 - 9*gamma_1/2 + 3*log(2)/2 + 5*log(2)^2/2, where gamma is Euler's constant (A001620) and gamma_1 is the 1st Stieltjes constant (A082633). (End) %p A145501 nmax := 100 : %p A145501 L := [1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,seq(0,i=1..nmax)] : %p A145501 MOBIUSi(%) : %p A145501 MOBIUSi(%) : %p A145501 MOBIUSi(%) ; # _R. J. Mathar_, Sep 25 2017 %t A145501 f[p_, e_] := (e + 1)*(e + 2)/2; f[2, 1] = 3; f[2, e_] := 3*(e - 2)*(e - 1) + 7; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 25 2022 *) %o A145501 (PARI) %o A145501 up_to = 10000 %o A145501 t1=direuler(p=2, up_to, 1/(1-X)^3); %o A145501 t2=direuler(p=2, 2, 1+1*X^2+4*X^4, up_to); %o A145501 t3=dirmul(t1, t2); %o A145501 \\ _Antti Karttunen_, Sep 24 2017, after PARI-code in A145444. %o A145501 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, if(f[i,2] == 1, 3, 3*(f[i,2]-2)*(f[i,2]-1)+7), (f[i,2]+1)*(f[i,2]+2)/2)); } \\ _Amiram Eldar_, Oct 25 2022 %Y A145501 Cf. A007425, A145444. %Y A145501 Cf. A001620, A082633. %K A145501 nonn,mult %O A145501 1,2 %A A145501 _N. J. A. Sloane_, Mar 14 2009