This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145512 #13 Nov 28 2017 11:50:58 %S A145512 1,2,11,416,106121,184174976,2301962201813,215628573640652084, %T A145512 155675227490715893806397,884267692532264259002637317099, %U A145512 40145668231846724902431764046045910334,14749630591672953206497180542249687004502709494 %N A145512 Number of partitions of 9^n into powers of 9. %H A145512 Alois P. Heinz, <a href="/A145512/b145512.txt">Table of n, a(n) for n = 0..47</a> %F A145512 a(n) = [x^(9^n)] 1/Product_{j>=0}(1-x^(9^j)). %e A145512 a(1) = 2, because there are 2 partitions of 9^1 into powers of 9: [1,1,1,1,1,1,1,1,1], [9]. %p A145512 g:= proc(b,n,k) option remember; local t; if b<0 then 0 elif b=0 or n=0 or k<=1 then 1 elif b>=n then add(g(b-t, n, k) *binomial(n+1, t) *(-1)^(t+1), t=1..n+1); else g(b-1, n, k) +g(b*k, n-1, k) fi end: a:= n-> g(1,n,9): seq(a(n), n=0..13); %Y A145512 Cf. 9th column of A145515, A007318. %K A145512 nonn %O A145512 0,2 %A A145512 _Alois P. Heinz_, Oct 11 2008