cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145521 Take the primes raised to prime exponents, arranged in numerical order (A053810). If A053810(n) = r(n)^q(n), where r(n) and q(n) are primes, then a(n) = q(n)^r(n).

This page as a plain text file.
%I A145521 #14 Aug 14 2024 01:51:13
%S A145521 4,9,8,32,27,25,128,2048,243,49,8192,125,131072,2187,524288,8388608,
%T A145521 536870912,2147483648,177147,137438953472,2199023255552,8796093022208,
%U A145521 121,343,1594323,140737488355328,9007199254740992,3125,576460752303423488,2305843009213693952,147573952589676412928
%N A145521 Take the primes raised to prime exponents, arranged in numerical order (A053810). If A053810(n) = r(n)^q(n), where r(n) and q(n) are primes, then a(n) = q(n)^r(n).
%C A145521 a(n) = A053812(n)^A053811(n).
%o A145521 (PARI) lista(nn) = for(k=1, nn, if(isprime(isprimepower(k, &p)), print1(bigomega(k)^p, ", "))); \\ _Jinyuan Wang_, Feb 25 2020
%o A145521 (Python)
%o A145521 from math import prod
%o A145521 from sympy import primepi, integer_nthroot, primerange, factorint
%o A145521 def A145521(n):
%o A145521     def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x, p)[0]) for p in primerange(x.bit_length())))
%o A145521     kmin, kmax = 1,2
%o A145521     while f(kmax) >= kmax:
%o A145521         kmax <<= 1
%o A145521     while True:
%o A145521         kmid = kmax+kmin>>1
%o A145521         if f(kmid) < kmid:
%o A145521             kmax = kmid
%o A145521         else:
%o A145521             kmin = kmid
%o A145521         if kmax-kmin <= 1:
%o A145521             break
%o A145521     return prod(e**p for p,e in factorint(kmax).items()) # _Chai Wah Wu_, Aug 13 2024
%Y A145521 Cf. A053810, A053811, A053812, A145522.
%K A145521 nonn
%O A145521 1,1
%A A145521 _Leroy Quet_, Oct 12 2008
%E A145521 Extended by _Ray Chandler_, Nov 01 2008
%E A145521 More terms from _Jinyuan Wang_, Feb 25 2020