This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145521 #14 Aug 14 2024 01:51:13 %S A145521 4,9,8,32,27,25,128,2048,243,49,8192,125,131072,2187,524288,8388608, %T A145521 536870912,2147483648,177147,137438953472,2199023255552,8796093022208, %U A145521 121,343,1594323,140737488355328,9007199254740992,3125,576460752303423488,2305843009213693952,147573952589676412928 %N A145521 Take the primes raised to prime exponents, arranged in numerical order (A053810). If A053810(n) = r(n)^q(n), where r(n) and q(n) are primes, then a(n) = q(n)^r(n). %C A145521 a(n) = A053812(n)^A053811(n). %o A145521 (PARI) lista(nn) = for(k=1, nn, if(isprime(isprimepower(k, &p)), print1(bigomega(k)^p, ", "))); \\ _Jinyuan Wang_, Feb 25 2020 %o A145521 (Python) %o A145521 from math import prod %o A145521 from sympy import primepi, integer_nthroot, primerange, factorint %o A145521 def A145521(n): %o A145521 def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x, p)[0]) for p in primerange(x.bit_length()))) %o A145521 kmin, kmax = 1,2 %o A145521 while f(kmax) >= kmax: %o A145521 kmax <<= 1 %o A145521 while True: %o A145521 kmid = kmax+kmin>>1 %o A145521 if f(kmid) < kmid: %o A145521 kmax = kmid %o A145521 else: %o A145521 kmin = kmid %o A145521 if kmax-kmin <= 1: %o A145521 break %o A145521 return prod(e**p for p,e in factorint(kmax).items()) # _Chai Wah Wu_, Aug 13 2024 %Y A145521 Cf. A053810, A053811, A053812, A145522. %K A145521 nonn %O A145521 1,1 %A A145521 _Leroy Quet_, Oct 12 2008 %E A145521 Extended by _Ray Chandler_, Nov 01 2008 %E A145521 More terms from _Jinyuan Wang_, Feb 25 2020