cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145533 a(n) is the number of numbers removed in each step of Eratosthenes's sieve for 6!.

This page as a plain text file.
%I A145533 #9 Feb 23 2019 19:40:17
%S A145533 359,119,47,26,14,11,7,5,3
%N A145533 a(n) is the number of numbers removed in each step of Eratosthenes's sieve for 6!.
%C A145533 Number of steps in Eratosthenes's sieve for n! is A133228(n).
%C A145533 Number of primes less than 6! is 720 - 359 - 119 - 47 - 26 - 14 - 11 - 7 - 5 - 3 - 1 = 128 = A003604(6).
%e A145533 a(1)=359 because in the first step we remove all numbers divisible by 2 (= 360) with the exception of the first one, i.e., 2.
%e A145533 a(2)=119 because the number of numbers divisible by 3 and not divisible by 2 is 120 and we remove all such numbers with the exception of the first one, 3.
%p A145533 A145533 := {$(1..6!)}: for n from 1 do p:=ithprime(n): r:=0: lim:=6!/p: for k from 2 to lim do if(member(k*p,A145533))then r:=r+1: fi: A145533 := A145533 minus {k*p}: od: printf("%d, ", r): if(r=0)then break: fi: od: # _Nathaniel Johnston_, Jun 23 2011
%t A145533 {m1, m2, m3, m4, m5, m6, m7, m8, m9} = {-1, -1, -1, -1, -1, -1, -1, -1, -1};
%t A145533 Do[If[Mod[n, 2] == 0, m1 = m1 + 1,
%t A145533 If[Mod[n, 3] == 0, m2 = m2 + 1,
%t A145533 If[Mod[n, 5] == 0, m3 = m3 + 1,
%t A145533 If[Mod[n, 7] == 0, m4 = m4 + 1,
%t A145533 If[Mod[n, 11] == 0, m5 = m5 + 1,
%t A145533 If[Mod[n, 13] == 0, m6 = m6 + 1,
%t A145533 If[Mod[n, 17] == 0, m7 = m7 + 1,
%t A145533 If[Mod[n, 19] == 0, m8 = m8 + 1,
%t A145533 If[Mod[n, 23] == 0, m9 = m9 + 1]]]]]]]]], {n, 1, 6!}];
%t A145533 Print[{m1, m2, m3, m4, m5, m6, m7, m8, m9}] (* _Artur Jasinski_ *)
%Y A145533 Cf. A003604, A133228, A145532-A145540.
%K A145533 fini,full,nonn
%O A145533 1,1
%A A145533 _Artur Jasinski_, Oct 12 2008