This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145534 #13 Feb 23 2019 19:40:28 %S A145534 2519,839,335,191,104,79,57,49,39,31,27,21,18,17,14,9,7,5,3 %N A145534 a(n) is the number of numbers removed in each step of Eratosthenes's sieve for 7!. %C A145534 Number of steps in Eratosthenes's sieve for n! is A133228(n). %C A145534 Number of primes less than 7! is 7! - (sum all numbers in this sequence) - 1 = A003604(7). %p A145534 A145534 := {$(1..7!)}: for n from 1 do p:=ithprime(n): r:=0: lim:=7!/p: for k from 2 to lim do if(member(k*p,A145534))then r:=r+1: fi: A145534 := A145534 minus {k*p}: od: printf("%d, ", r): if(r=0)then break: fi: od: # _Nathaniel Johnston_, Jun 23 2011 %t A145534 f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 7; kk = PrimePi[Sqrt[nn! ]]; t3 = f3[nn!, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *) %Y A145534 Cf. A003604, A133228, A145532-A145540. %K A145534 fini,full,nonn %O A145534 1,1 %A A145534 _Artur Jasinski_ with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008