cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145535 a(n) is the number of numbers removed in each step of Eratosthenes's sieve for 8!.

This page as a plain text file.
%I A145535 #13 Feb 23 2019 19:44:57
%S A145535 20159,6719,2687,1535,836,642,454,381,297,223,204,170,154,146,134,119,
%T A145535 108,103,92,84,81,76,70,64,56,53,51,47,45,42,36,32,30,28,23,21,18,16,
%U A145535 15,12,8,6,5,3,2,1
%N A145535 a(n) is the number of numbers removed in each step of Eratosthenes's sieve for 8!.
%C A145535 Number of steps in Eratosthenes's sieve for n! is A133228(n).
%C A145535 Number of primes less than 8! is 8! - (sum all numbers in this sequence) - 1 = A003604(8).
%p A145535 A145535 := {$(1..8!)}: for n from 1 do p:=ithprime(n): r:=0: lim:=8!/p: for k from 2 to lim do if(member(k*p,A145535))then r:=r+1: fi: A145535 := A145535 minus {k*p}: od: printf("%d, ", r): if(r=0)then break: fi: od: # _Nathaniel Johnston_, Jun 23 2011
%t A145535 f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 8; kk = PrimePi[Sqrt[nn! ]]; t3 = f3[nn!, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)
%Y A145535 Cf. A003604, A133228, A145532-A145540.
%K A145535 fini,full,nonn
%O A145535 1,1
%A A145535 _Artur Jasinski_ with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008