This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145537 #13 Feb 23 2019 19:46:48 %S A145537 1814399,604799,241919,138239,75402,58003,40941,34478,26982,20473, %T A145537 18496,15008,13184,12266,10957,9492,8342,7920,7057,6538,6248,5667, %U A145537 5317,4874,4414,4181,4057,3866,3752,3582,3166,3054,2911,2856,2675,2640,2544,2455,2399 %N A145537 a(n) is the number of numbers removed in each step of Eratosthenes's sieve for 10!. %C A145537 Number of steps in Eratosthenes's sieve for n! is A133228(n). %C A145537 Number of primes less than 10! is 10! - (sum all numbers in this sequence) - 1 = A003604(10). %H A145537 Nathaniel Johnston, <a href="/A145537/b145537.txt">Table of n, a(n) for n = 1..291</a> (full sequence) %p A145537 A145537:=Array([seq(0,j=1..291)]): lim:=10!: p:=Array([seq(ithprime(j),j=1..291)]): for n from 4 to lim do if(isprime(n))then n:=n+1: fi: for k from 1 to 291 do if(n mod p[k] = 0)then A145537[k]:=A145537[k]+1: break: fi: od: od: seq(A145537[j],j=1..291); # _Nathaniel Johnston_, Jun 23 2011 %t A145537 f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 10; kk = PrimePi[Sqrt[nn! ]]; t3 = f3[nn!, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *) %Y A145537 Cf. A003604, A133228, A145532-A145540. %K A145537 fini,nonn %O A145537 1,1 %A A145537 _Artur Jasinski_ with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008