cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145570 Circulants of Catalan numbers.

Original entry on oeis.org

1, 0, 4, 459, 474743, 5237087765, 686666209113536, 1140713637429903585344, 24957776794187383667855422048, 7377122100200717681983830999516060000, 30004208141654594144715773978429859682880072414, 1703184026083327296951313841743251806796128938200000000000, 1365027457901516492029047382022588117973123824294791438142988114734512
Offset: 1

Views

Author

Wolfdieter Lang Feb 05 2009

Keywords

Comments

A circulant C_n is the determinant of a circular n X n matrix M, i.e. one with entries M_{i,j}=a_{i-j} where the indices are taken mod n. Hence C_n=C_n([a_n=a_0,a_{n-1},...,a_1]), with the first row of M given. The second row is [a_1,a_0,a_{n-1},...,a_2], etc.
The eigenvalues of a circular n X n matrix M(n) are lambda^{(n)}_k=sum(a_j*(rho_n)^(j*k),j=1..n), with the n-th roots of unity (rho_n)^k, k=1..n, where rho_n:=exp(2*Pi/n). See the P. J. Davis reference which uses a different convention, and the term circulant for circular.

Examples

			n=4: the circular 4 X 4 matrix is M(4) = matrix([[5,2,1,1],[1,5,2,1],[1,1,5,2],[2,1,1,5]]).
n=4: 4th roots of unity: rho_4 = I, (rho_4)^2 = -1, (rho_4)^3 = -I, (rho_4)^4 =1, with I^2=-1.
n=4: the eigenvalues of M(4) are therefore: 1*I^k + 1*(-1)^k + 2*(-I)^k + 5*1^k, k=1,..,4, namely 4-I, 3, 4+I, 9.
n=4: a(4)= Det(M(4)) = (4-I)*3*(4+I)*9 = 459.
		

References

  • P. J. Davis, Circulant Matrices, J. Wiley, New York, 1979.

Crossrefs

A123744, A123745 (circulants for Fibonacci numbers).

Programs

  • Mathematica
    rho[n_] := Exp[2*I*Pi/n]; lambda[n_, k_] := Sum[ CatalanNumber[j - 1]*rho[n]^(j*k), {j, 1, n}]; a[n_?EvenQ] := FullSimplify[ Product[ lambda[n, k], {k, 1, n}]]; a[n_?OddQ] := Expand[ Product[ lambda[n, k], {k, 1, n}]] /. Plus[x_Integer, Times[y_Integer, Power[E, Times[ Complex[0, Rational[, FactorInteger[n][[1, 1]]]], Pi]]], _] -> x - y; Table[a[n], {n, 1, 13}] (* Jean-François Alcover, Sep 27 2011 *)

Formula

a(n)=product(lambda^{(n)}k,k=1..n), with lambda^{(n)}_k=sum(Ca{j-1}*(rho_n)^(j*k), j=1..n).
a(n) = C_n([Ca_{n-1},Ca_{n-2},...,Ca_0]) with the Catalan numbers Ca_n:=A000108(n), and the circulant C_n (see comment above).