A145571 Numerators of partial sums for Liouville's constant.
1, 11, 110001, 110001000000000000000001, 110001000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001
Offset: 1
Examples
a(2)=11 because c(2)=1/10 + 1/100 = 11/100. a(6) has 1's at positions 1,2,6,24,120,720 (A000142, factorials) and 0's in between.
References
- B. Fine and G. Rosenberger, Number theory: an introduction via the distribution of primes, Birkhäuser, Boston, Basel, Berlin, 2007. Th. 6.3.2.3., p. 286.
Programs
-
Mathematica
Numerator[Accumulate[1/10^Range[6]!]] (* Paolo Xausa, Jun 25 2024 *) Block[{k = 0}, NestList[#*10^(++k*k!) + 1 &, 1, 5]] (* Paolo Xausa, Jun 26 2024 *)
Formula
a(n) = numerator(c(n)), with c(n):= Sum_{k=1..n} 1/10^(k!).
a(1) = 1, and a(n) = a(n-1)*10^(z(n)) + 1, for n >= 2, where z(n) = A001563(n-1) = n! - (n-1)! = (n-1)!*(n-1). - Wolfdieter Lang, Apr 09 2024 [Corrected by Paolo Xausa, Jun 26 2024 ]
Comments