A145572 Numerators of partial sums for Liouville's constant, read as base 2 (binary) numbers.
1, 3, 49, 12845057, 1017690263500988729456314874071089153, 4222921592695952872362526736376161058920018764920519780147745963811744865992371113095993596088044297100172572224585271942341064532181870606866447799704872724575357044373908131956500952542608981420222196042850818326529
Offset: 1
Examples
a(3)=49, because A145571(3)=110001, and the binary number 110001 translates to 2^5+2^4+2^0=32+16+1 = 49.
Crossrefs
Programs
-
Mathematica
a[n_] := FromDigits[RealDigits[Sum[1/10^k!, {k, n}], 10, n!][[1]], 2]; Array[a, 6] (* Robert G. Wilson v, Aug 08 2018 *) Block[{k = 0}, NestList[#*2^(++k*k!) + 1 &, 1, 5]] (* Paolo Xausa, Jun 27 2024 *)
Formula
a(n) = A145571(n) interpreted as number in binary notation, then converted to decimal notation.
From Wolfdieter Lang, Apr 10 2024: (Start)
a(n) = Sum_{j=0..n} 2^(n! - j!) = 2^(n!)*B(n) = numerator(B(n)), where B(n) := Sum_{j=1..n} 1/2^(j!), for n >= 1 (Proof from the positions of 1 in A145571).
a(1) = 1, and a(n) = a(n-1)*2^z(n) + 1, where z(n) = n! - (n-1)! = A001563(n-1), for n >= 2.
(End)
Comments