A145573 Characteristic partition array for partitions without part 1.
0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0
Offset: 1
Examples
[0],[1,0],[1,0,0],[1,0,1,0,0],[1,0,1,0,0,0,0],... a(4,3) = a(1+2+3+3) = a(9) = 1 because a(4,3) belongs to the partition [2^2]=[2,2] of n=4 which has no part 1.
Links
- W. Lang and M. Sjodahl First 10 rows of the array and row sums.
Formula
As array: a(n,k)=1 if the k-th partition of n in A-St order has no part 1, and a(n,k)=0 else.
Translated into the sequence a(m) entry: a(n,k) = a(sum(p(k),k=1..n)+k).
Comments