cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145581 Number of isomorphism classes of toric log del Pezzo surfaces with index L = n.

This page as a plain text file.
%I A145581 #22 Jan 02 2025 09:33:42
%S A145581 16,30,99,91,250,379,429,307,690,916,939,1279,1142,1545,4312,1030,
%T A145581 1892,3491,2300,4427,6792,3066,3345,4914,4838,4122,5302,7878,4913,
%U A145581 24348,5275,3777
%N A145581 Number of isomorphism classes of toric log del Pezzo surfaces with index L = n.
%C A145581 A145582(n) is the number of rank one toric log del Pezzo surfaces with index L = n. Both are in the table for Theorem 1.2, p. 4 of Kasprzyk, Kreuzer and Nill.
%H A145581 Dimitrios I. Dais, <a href="https://arxiv.org/abs/1806.08351">On the Twelve-Point Theorem for l-Reflexive Polygons</a>, arXiv:1806.08351 [math.CO], 2018.
%H A145581 Alexander M. Kasprzyk, Maximilian Kreuzer and Benjamin Nill, <a href="https://arxiv.org/abs/0810.2207">On the combinatorial classification of toric log del Pezzo surfaces</a>, arXiv:0810.2207 [math.AG], 2008.
%H A145581 Justus Springer, <a href="https://github.com/justus-springer/RationalPolygons.jl">RationalPolygons.jl (Version 1.1.0)</a>, implementation of algorithm by Kasprzyk, Kreuzer, and Nill, 2024.
%Y A145581 Cf. A145582.
%K A145581 nonn
%O A145581 1,1
%A A145581 _Jonathan Vos Post_, Oct 14 2008
%E A145581 a(17) from _Danny Rorabaugh_, Jun 22 2018
%E A145581 a(18)-a(32) from _Justus Springer_, Dec 31 2024