cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145582 Number of isomorphism classes of rank one toric log del Pezzo surfaces with index L = n.

This page as a plain text file.
%I A145582 #40 Apr 20 2024 07:41:13
%S A145582 5,7,18,13,33,26,45,27,51,51,67,53,69,74,133,48,89,81,102,110,178,105,
%T A145582 124,109,161,119,164,135,142,187,140,105,274,159,383,169,145,166,329,
%U A145582 221,177,266,180,230,404,189,220,213,315,264,384,233,225,260,573,298
%N A145582 Number of isomorphism classes of rank one toric log del Pezzo surfaces with index L = n.
%C A145582 A145581(n) is the number of toric log del Pezzo surfaces with index L = n. Both are in the table for Theorem 1.2, p. 4 of Kasprzyk, Kreuzer and Nill.
%H A145582 Justus Springer, <a href="/A145582/b145582.txt">Table of n, a(n) for n = 1..5000</a>
%H A145582 Andreas Bäuerle, <a href="https://arxiv.org/abs/2308.12719">Sharp volume and multiplicity bounds for Fano simplices</a>, arXiv:2308.12719 [math.CO], 2023.
%H A145582 Andreas Bäuerle, <a href="https://github.com/abaeuerle/fano-simplices">Classification of Fano simplices</a>
%H A145582 Daniel Haettig, Beatrice Hafner, Juergen Hausen and Justus Springer, <a href="https://arxiv.org/abs/2207.14790">Del Pezzo surfaces of Picard number one admitting a torus action</a>, arXiv:2207.14790 [math.AG], 2022. [see Proposition 7.1, p. 27]
%H A145582 Daniel Hättig, Jürgen Hausen, Justus Springer and Hendrik Süß, <a href="https://www.math.uni-tuebingen.de/forschung/algebra/ldp-database/">Log del Pezzo surfaces with torus action - a searchable database</a>
%H A145582 Alexander M. Kasprzyk, Maximilian Kreuzer and Benjamin Nill, <a href="https://doi.org/10.1112/S1461157008000387">On the combinatorial classification of toric log del Pezzo surfaces</a>, LMS J. Comput. Math. 13 (2010) 33-46; arXiv:<a href="https://arxiv.org/abs/0810.2207">0810.2207</a> [math.AG], 2008.
%H A145582 Alexander M. Kasprzyk and Benjamin Nill, Chapter 17 <a href="https://doi.org/10.1142/9789814412551_0017">Fano polytopes</a>, in: Strings, Gauge Fields, And The Geometry Behind, World Scientific, 2012. See p. 359.
%Y A145582 Cf. A145581, A364712.
%K A145582 nonn
%O A145582 1,1
%A A145582 _Jonathan Vos Post_, Oct 14 2008
%E A145582 a(17) from Kasprzyk and Nill (2012) added by _Andrey Zabolotskiy_, Feb 17 2020
%E A145582 a(18)-a(200) from Haettig, Hafner, Hausen and Springer (2022) added by _Justus Springer_, Aug 04 2023
%E A145582 a(201)-a(1000) from Bäuerle's data, added by _Andrey Zabolotskiy_, Oct 01 2023
%E A145582 a(1001)-a(5000) computed using Bäuerle's algorithm, added by _Justus Springer_, Apr 15 2024