This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145598 #21 Aug 03 2025 16:09:19 %S A145598 1,4,4,10,24,10,20,84,84,20,35,224,392,224,35,56,504,1344,1344,504,56, %T A145598 84,1008,3780,5760,3780,1008,84,120,1848,9240,19800,19800,9240,1848, %U A145598 120,165,3168,20328,58080,81675,58080,20328,3168,165,220,5148,41184,151008 %N A145598 Triangular array of generalized Narayana numbers: T(n, k) = 4*binomial(n+1, k+3)*binomial(n+1, k-1)/(n+1). %C A145598 T(n,k) is the number of walks of n unit steps, each step in the direction either up (U), down (D), right (R) or left (L), starting from (0,0) and finishing at lattice points on the horizontal line y = 3 and which remain in the upper half-plane y >= 0. An example is given in the Example section below. %C A145598 The current array is the case r = 3 of the generalized Narayana numbers N_r(n,k) := (r + 1)/(n + 1)*binomial(n + 1,k + r)*binomial(n + 1,k - 1), which count walks of n steps from the origin to points on the horizontal line y = r that remain in the upper half-plane. Case r = 0 gives the table of Narayana numbers A001263 (but with an offset of 0 in the row numbering). For other cases see A145596 (r = 1), A145597 (r = 2) and A145599 (r = 4). %H A145598 F. Cai, Q.-H. Hou, Y. Sun, and A. L. B. Yang, <a href="http://arxiv.org/abs/1808.05736">Combinatorial identities related to 2x2 submatrices of recursive matrices</a>, arXiv:1808.05736 [math.CO], 2018; Table 2.1 for k=3. %H A145598 R. K. Guy, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/GUY/catwalks.html">Catwalks, sandsteps and Pascal pyramids</a>, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6. %F A145598 T(n,k) = 4/(n+1)*binomial(n+1,k+3)*binomial(n+1,k-1) for n >=3 and 1 <= k <= n-2. In the notation of [Guy], T(n,k) equals w_n(x,y) at (x,y) = (2*k - n + 1,3). Row sums A003518. %F A145598 O.g.f. for column k+2: 4/(k + 1) * y^(k+4)/(1 - y)^(k+6) * Jacobi_P(k,4,1,(1 + y)/(1 - y)). %F A145598 Identities for row polynomials R_n(x) = Sum_{k = 1 .. n - 2} T(n,k)*x^k: %F A145598 x^3*R_(n-1)(x) = 4*(n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)*(n + 4)) * Sum_{k = 0..n} binomial(n + 4,k) * binomial(2n - k,n) * (x - 1)^k; %F A145598 Sum_{k = 1..n} (-1)^(k+1)*binomial(n,k)*R_k(x^2)*(1 + x)^(2*(n-k)) = R_n(1)*x^(n-1) = A003518(n)*x^(n-1). %F A145598 Row generating polynomial R_(n+3)(x) = 4/(n+4)*x*(1-x)^n * Jacobi_P(n,4,4,(1+x)/(1-x)). - _Peter Bala_, Oct 31 2008 %F A145598 G.f.: A(x) = x*A145596(x)^2. - _Vladimir Kruchinin_, Oct 09 2020 %e A145598 Triangle starts %e A145598 n\k| 1 2 3 4 5 6 %e A145598 ===================================== %e A145598 3 | 1 %e A145598 4 | 4 4 %e A145598 5 | 10 24 10 %e A145598 6 | 20 84 84 20 %e A145598 7 | 35 224 392 224 35 %e A145598 8 | 56 504 1344 1344 504 56 %e A145598 ... %e A145598 Row 5: T(5,3) = 10: the 10 walks of length 5 from (0,0) to (2,3) are UUURR, UURUR, UURRU, URUUR, URURU, URRUU, RUUUR, RUURU, RURUU and RRUUU. %e A145598 * %e A145598 *......*......*......y......*......*......* %e A145598 . %e A145598 . %e A145598 *.....10......*.....24......*.....10......* %e A145598 . %e A145598 . %e A145598 *......*......*......*......*......*......* %e A145598 . %e A145598 . %e A145598 *......*......*......*......*......*......* %e A145598 . %e A145598 . %e A145598 *......*......*......o......*......*......* x axis %e A145598 . %p A145598 T := (n,k) -> 4/(n+1)*binomial(n+1,k+3)*binomial(n+1,k-1): %p A145598 for n from 3 to 12 do seq(T(n, k), k = 1 .. n-2) end do; %Y A145598 Cf. A003518 (row sums), A001263, A145602, A145596, A145597, A145599. %K A145598 easy,nonn,tabl %O A145598 3,2 %A A145598 _Peter Bala_, Oct 15 2008