cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145600 a(n) is the number of walks from (0,0) to (0,1) that remain in the upper half-plane y >= 0 using (2*n - 1) unit steps either up (U), down (D), left (L) or right (R).

This page as a plain text file.
%I A145600 #10 Dec 01 2020 07:38:24
%S A145600 1,8,75,784,8820,104544,1288287,16359200,212751396,2821056160,
%T A145600 38013731756,519227905728,7174705330000,100136810390400,
%U A145600 1409850293610375,20002637245262400,285732116760449700
%N A145600 a(n) is the number of walks from (0,0) to (0,1) that remain in the upper half-plane y >= 0 using (2*n - 1) unit steps either up (U), down (D), left (L) or right (R).
%C A145600 Cf. A000891, which enumerates walks in the upper half-plane starting and finishing at the origin. See also A145601, A145602 and A145603. This sequence is the central column taken from triangle A145596, which enumerates walks in the upper half-plane starting at the origin and finishing on the horizontal line y = 1.
%D A145600 M. Dukes and Y. Le Borgne, Parallelogram polyominoes, the sandpile model on a complete bipartite graph, and a q,t-Narayana polynomial, Journal of Combinatorial Theory, Series A, Volume 120, Issue 4, May 2013, Pages 816-842. - From _N. J. A. Sloane_, Feb 21 2013
%H A145600 R. K. Guy, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/GUY/catwalks.html">Catwalks, sandsteps and Pascal pyramids</a>, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
%F A145600 a(n) = 1/n*binomial(2*n,n+1)*binomial(2*n,n-1).
%F A145600 a(n) = A135389(n-1)/(n+1). - _R. J. Mathar_, Jul 14 2013
%F A145600 D-finite with recurrence (n+1)^2*a(n) -4*n*(5*n-1)*a(n-1) +16*(2*n-3)^2*a(n-2)=0. - _R. J. Mathar_, Jul 14 2013
%e A145600 a(2) = 8: the 8 walks from (0,0) to (0,1) of three steps are
%e A145600 UDU, UUD, URL, ULR, RLU, LRU, RUL and LUR.
%p A145600 a(n) := 1/n*binomial(2*n,n+1)*binomial(2*n,n-1);
%p A145600 seq(a(n),n = 1..19);
%Y A145600 Cf. A000891, A145596, A145601, A145602, A145603.
%K A145600 easy,nonn
%O A145600 1,2
%A A145600 _Peter Bala_, Oct 14 2008