cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145601 a(n) is the number of walks from (0,0) to (0,2) that remain in the upper half-plane y >= 0 using 2*n unit steps either up (U), down (D), left (L) or right (R).

This page as a plain text file.
%I A145601 #2 Mar 31 2012 13:47:34
%S A145601 1,15,189,2352,29700,382239,5010005,66745536,901995588,12342120700,
%T A145601 170724392916,2384209771200,33577620944400,476432168185575,
%U A145601 6805332732133125,97790670976838400,1412830549632694500
%N A145601 a(n) is the number of walks from (0,0) to (0,2) that remain in the upper half-plane y >= 0 using 2*n unit steps either up (U), down (D), left (L) or right (R).
%C A145601 Cf. A000891, which enumerates walks in the upper half-plane starting and finishing at the origin. See also A145600, A145602 and A145603. This sequence is the central column taken from triangle A145597, which enumerates walks in the upper half-plane starting at the origin and finishing on the horizontal line y = 2.
%H A145601 R. K. Guy, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/GUY/catwalks.html">Catwalks, sandsteps and Pascal pyramids</a>, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
%F A145601 a(n) = 3/(2*n+1)*binomial(2*n+1,n+2)*binomial(2*n+1,n-1).
%e A145601 a(2) = 15: the 15 walks from (0,0) to (0,2) of four steps are:
%e A145601 UUUD, UULR, UURL, UUDU, URUL, ULUR, URLU, ULRU,RUUL, LUUR,
%e A145601 RLUU, LRUU, RULU, LURU and UDUU.
%p A145601 with(combinat):
%p A145601 a(n) = 3/(2*n+1)*binomial(2*n+1,n+2)*binomial(2*n+1,n-1);
%p A145601 seq(a(n),n = 1..19);
%Y A145601 A000891, A145597, A145600, A145602, A145603.
%K A145601 easy,nonn
%O A145601 1,2
%A A145601 _Peter Bala_, Oct 15 2008