cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145619 Numerator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=6.

This page as a plain text file.
%I A145619 #11 Jun 05 2016 23:33:35
%S A145619 39,2835,255191,257233353,2315100338,1833559470601,429052916136639,
%T A145619 123567239847463143,56717363089986833887,2586311756903401044465,
%U A145619 46553611624261219442817,154185561699553158848604845
%N A145619 Numerator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=6.
%C A145619 For denominators see A145620. For general properties of A_l(x) see A145609.
%t A145619 m = 6; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Numerator[k]], {r, 1, 25}]; aa (* _Artur Jasinski_ *)
%t A145619 a[n_,m_]:=Integrate[(m-x^n)/(m-x),{x,0,1}]+(m^n-m)Log[m/(m-1)]
%t A145619 Table[6 a[2 n, 6] // FullSimplify  // Numerator, {n,1,25}]  (* _Gerry Martens_ , Jun 04 2016 *)
%Y A145619 Cf. A145609 - A145640.
%K A145619 frac,nonn
%O A145619 1,1
%A A145619 _Artur Jasinski_, Oct 14 2008
%E A145619 Edited by _R. J. Mathar_, Aug 21 2009