cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145629 Denominator of the polynomial A_l(x) = Sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=10.

This page as a plain text file.
%I A145629 #8 Mar 17 2019 02:04:31
%S A145629 1,6,1,28,63,1386,1287,10296,14586,277134,323323,89237148,22309287,
%T A145629 401567166,5822723907,2888071057872,722017764468,361008882234,
%U A145629 6678664321329,26714657285316,39117891024927,3364138628143722
%N A145629 Denominator of the polynomial A_l(x) = Sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=10.
%C A145629 For numerators see A145627. For general properties of A_l(x) see A145609.
%p A145629 A := proc(l,x) add(x^(l-d)/d,d=1..l-1) ; end: A145629 := proc(n) denom( A(2*n+1,10)) ; end: seq(A145629(n),n=1..20) ; # _R. J. Mathar_, Aug 21 2009
%t A145629 m = 10; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Denominator[k]], {r, 1, 30}]; aa (* _Artur Jasinski_ *)
%Y A145629 Cf. A145609 - A145640.
%K A145629 frac,nonn
%O A145629 1,2
%A A145629 _Artur Jasinski_, Oct 14 2008
%E A145629 Edited by _R. J. Mathar_, Aug 21 2009