cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145682 The value of the sum shown in the display appears to 2, 8, 32 - sqrt(2), 113, 382, 833, 1822, 3713, 7582, ... for n = 1, ..., 9.

Original entry on oeis.org

2, 8, 32, 113, 382, 833, 1822, 3713, 7582
Offset: 1

Views

Author

Bill Gosper, Apr 12 2005

Keywords

Comments

This is an unusual sequence mentioned on the Math Fun Mailing list. It does not quite fit the format of regular OEIS entries, but is too interesting to be forgotten. - N. J. A. Sloane, Mar 29 2009
The definition arises from the Fourier series for the Snowflake curve.
..................................................................
.............................. inf ...............................
.............................. ==== ............ m ...............
............................ k \ ....... %pi (k 2..- 5) ..... n ..
....................... (- 1).. > .. tan(--------------) (- 1) ...
............. inf ............ / ............ n + m ..............
............. ==== ........... ==== ........ 2 ...................
..... 5 m - 1 \ .............. n = 1 .............................
.. 3 2 ....... > ...... --------------------------------------- ..
............. / .................................... m ...........
............. ==== .......... m ... 3 ... 10 %pi (k 2 .- 5) ......
............. k = - inf . (k 2..- 5)..csc(-----------------) .....
................................................ 2 m .............
............................................... 2 ................
.. ------------------------------------------------------------ ..
........................... 3 ... 5 %pi ..........................
........................ %pi..csc(-----) .........................
................................... m ............................
.................................. 2 .............................