A145687 Weight distribution of [168,84,24] binary extended quadratic-residue (or QR) code.
1, 0, 0, 0, 0, 0, 776216, 18130188, 5550332508, 1251282702264, 166071600559137, 13047136918828740, 629048543890724224, 19087130695796613120, 372099690249351069696, 4739291519495550533632
Offset: 0
Examples
The weight distribution is: i A_i 0 1 24 776216 28 18130188 32 5550332508 36 1251282702264 40 166071600559137 44 13047136918828740 48 629048543890724224 52 19087130695796613120 56 372099690249351069696 60 4739291519495550533632 64 39973673337590380494848 68 225696677727188706918400 72 860241108921860734582784 76 2227390683565491872595968 80 3935099586463594350379008 84 4755747412595715350724608 88 3935099586463594350379008 92 2227390683565491872595968 96 860241108921860734582784 100 225696677727188706918400 104 39973673337590380494848 108 4739291519495550533632 112 372099690249351069696 116 19087130695796613120 120 629048543890724224 124 13047136918828740 128 166071600559137 132 1251282702264 136 5550332508 140 18130188 144 776216 168 1
Links
- C. J. Tjhai and Martin Tomlinson, Weight Distributions of Quadratic Residue and Quadratic Double Circulant Codes over GF(2)
Comments