This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145724 #11 Feb 16 2025 08:33:09 %S A145724 1,-1,2,-3,5,-6,10,-13,19,-25,36,-46,64,-82,110,-139,184,-231,300, %T A145724 -375,480,-596,754,-930,1165,-1428,1772,-2162,2662,-3230,3952,-4773, %U A145724 5800,-6976,8430,-10093,12136,-14476,17320,-20585,24526,-29044,34466,-40684,48095 %N A145724 Expansion of q * f(-q^20) / (f(q) * chi(-q^5)) in powers of q where f(), chi() are Ramanujan theta functions. %C A145724 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %H A145724 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A145724 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %F A145724 Expansion of eta(q) * eta(q^4) * eta(q^10) * eta(q^20) / (eta(q^2)^3 * eta(q^5)) in powers of q. %F A145724 Euler transform of period 20 sequence [ -1, 2, -1, 1, 0, 2, -1, 1, -1, 2, -1, 1, -1, 2, 0, 1, -1, 2, -1, 0, ...]. %F A145724 G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = 20^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A147701. %F A145724 Convolution inverse of A145723. %F A145724 a(n) ~ -(-1)^n * 3^(1/4) * exp(Pi*sqrt(3*n/5)) / (2^(5/2) * 5^(3/4) * n^(3/4)). - _Vaclav Kotesovec_, Jun 06 2018 %e A145724 G.f. = q - q^2 + 2*q^3 - 3*q^4 + 5*q^5 - 6*q^6 + 10*q^7 - 13*q^8 + 19*q^9 + ... %t A145724 a[ n_] := SeriesCoefficient[ q QPochhammer[ q^20] QPochhammer[ -q^5, q^5] / QPochhammer[ -q], {q, 0, n}]; (* _Michael Somos_, Sep 05 2015 *) %o A145724 (PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^10 + A) * eta(x^20 + A) / (eta(x^2 + A)^3 * eta(x^5 + A)), n))}; %Y A145724 Cf. A145723, A147701. %K A145724 sign %O A145724 1,3 %A A145724 _Michael Somos_, Nov 10 2008