This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145836 #19 Aug 10 2018 02:34:32 %S A145836 0,0,0,0,0,0,0,0,0,0,0,0,10080,0,0,0,15120,544320,544320,15120,0,0, %T A145836 40320,1958040,6108480,1958040,40320,0,0,24192,1796760,12267360, %U A145836 12267360,1796760,24192,0,1,4608,588168,7988904,18329850,7988904,588168,4608,1,255,74124,2066232,9874746,9874746,2066232,74124,255,3025,218484,2229402,4690350,2229402,218484,3025,7770,212436,965790,965790,212436,7770,6951,85680,185766,85680,6951,2646,15624,15624,2646,462,1260,462,36,36,1 %N A145836 Coefficients of a symmetric matrix representation of the 9th falling factorial power, read by antidiagonals. %C A145836 Osgood and Wu abstract: We investigate the coefficients generated by expressing the falling factorial (xy)_k as a linear combination of falling factorial products (x)_l (y)_m for l,m = 1,...,k. Algebraic and combinatoric properties of these coefficients are discussed, including recurrence relations, closed-form formulas, relations with Stirling numbers and a combinatorial characterization in terms of conjoint ranking tables. %H A145836 Brad Osgood, William Wu, <a href="http://arxiv.org/abs/0810.3327">Falling Factorials, Generating Functions and Conjoint Ranking Tables</a>, arXiv:0810.3327 [math.CO], 2008. %e A145836 Full array of coefficients: %e A145836 [0, 0, 0, 0, 0, 0, 0, 0, 1], %e A145836 [0, 0, 0, 0, 15120, 40320, 24192, 4608, 255], %e A145836 [0, 0, 10080, 544320, 1958040, 1796760, 588168, 74124, 3025], %e A145836 [0, 0, 544320, 6108480, 12267360, 7988904, 2066232, 218484, 7770], %e A145836 [0, 15120, 1958040, 12267360, 18329850, 9874746, 2229402, 212436, 6951], %e A145836 [0, 40320, 1796760, 7988904, 9874746, 4690350, 965790, 85680, 2646], %e A145836 [0, 24192, 588168, 2066232, 2229402, 965790, 185766, 15624, 462], %e A145836 [0, 4608, 74124, 218484, 212436, 85680, 15624, 1260, 36], %e A145836 [1, 255, 3025, 7770, 6951, 2646, 462, 36, 1] %t A145836 rows = 9; %t A145836 c[k_, l_ /; l <= rows, m_ /; m <= rows] := Sum[(-1)^(k-p) Abs[StirlingS1[k, p]] StirlingS2[p, l] StirlingS2[p, m], {p, 1, k}]; %t A145836 c[rows, _, _] = Nothing; %t A145836 Table[Table[c[rows, l-m+1, m], {m, 1, l}], {l, 1, 2rows-1}] // Flatten (* _Jean-François Alcover_, Aug 10 2018 *) %Y A145836 Cf. A008277, A068424. %K A145836 fini,full,nonn %O A145836 0,13 %A A145836 _Jonathan Vos Post_, Oct 21 2008 %E A145836 Corrected by _Michel Marcus_, Dec 15 2014