A145845 Number of permutations of length 2n+1 which are invariant under the reverse-complement map and have no decreasing subsequences of length 5.
1, 2, 7, 34, 208, 1504, 12283, 109778, 1050820, 10614856, 111978128, 1224261856, 13792583296, 159411938560, 1883550536707, 22687603653106, 277940485660012, 3456490397570392, 43565433620294908, 555752354850506312, 7167182317486700416, 93348781597357983232, 1226830676118851157712
Offset: 0
Keywords
Programs
-
Mathematica
Table[Sum[ Binomial[n, j]^2*(1/((j + 1)^2*(j + 2)))* Sum[Binomial[2*i, i]*Binomial[j + 1, i + 1]* Binomial[j + 2, i + 1], {i, 0, j}], {j, 0, n}], {n, 0, 20}]
-
PARI
/* using formula given; this gives fractions! */ C=binomial; a(n)=sum(j=0, n, C(n,j)^2 * (1/((j+1)^2*(j+2))) * sum(i=0, j, C(2*i,i)*C(j+1,i+i)*C(j+2,i+1))); \\ Joerg Arndt, Feb 18 2015
-
PARI
/* Using a(n) = sum(j=0, n, C(n,j)^2 * A005802(j)). */ f(n)= 2 * sum(k=0,n, binomial(2*k, k) * (binomial(n, k))^2 * (3*k^2+2*k+1-n-2*k*n)/((k+1)^2 * (k+2) * (n-k+1))); vector(33, N, my(n=N-1); sum(j=0,n, f(j) * C(n,j)^2 ) ) \\ Joerg Arndt, Feb 18 2015
Formula
a(n) = sum(j=0, n, C(n,j)^2 * A005802(j)).
a(n) = sum(j=0, n, C(n,j)^2 * (1/((j+1)^2 (j+2))) * sum(i=0, j, C(2*i,i) * C(j+1,i+i) * C(j+2,i+1))) where C(n,j) = n!/(j!(n-j)!).
Recurrence: (n+2)^3*(3*n+1)*a(n) = 2*(30*n^4 + 67*n^3 + 29*n^2 - 10*n - 8)*a(n-1) - 64*(n-1)^2*n*(3*n+4)*a(n-2). - Vaclav Kotesovec, Feb 18 2015
a(n) ~ 2^(4*n+5) / (Pi^(3/2) * n^(9/2)). - Vaclav Kotesovec, Feb 18 2015
Extensions
Added more terms, Joerg Arndt, Feb 18 2015