cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145845 Number of permutations of length 2n+1 which are invariant under the reverse-complement map and have no decreasing subsequences of length 5.

Original entry on oeis.org

1, 2, 7, 34, 208, 1504, 12283, 109778, 1050820, 10614856, 111978128, 1224261856, 13792583296, 159411938560, 1883550536707, 22687603653106, 277940485660012, 3456490397570392, 43565433620294908, 555752354850506312, 7167182317486700416, 93348781597357983232, 1226830676118851157712
Offset: 0

Views

Author

Eric S. Egge, Oct 21 2008

Keywords

Programs

  • Mathematica
    Table[Sum[ Binomial[n, j]^2*(1/((j + 1)^2*(j + 2)))* Sum[Binomial[2*i, i]*Binomial[j + 1, i + 1]* Binomial[j + 2, i + 1], {i, 0, j}], {j, 0, n}], {n, 0, 20}]
  • PARI
    /* using formula given; this gives fractions! */
    C=binomial;
    a(n)=sum(j=0, n, C(n,j)^2 * (1/((j+1)^2*(j+2))) * sum(i=0, j, C(2*i,i)*C(j+1,i+i)*C(j+2,i+1)));
    \\ Joerg Arndt, Feb 18 2015
    
  • PARI
    /* Using a(n) = sum(j=0, n, C(n,j)^2 * A005802(j)). */
    f(n)= 2 * sum(k=0,n, binomial(2*k, k) * (binomial(n, k))^2 * (3*k^2+2*k+1-n-2*k*n)/((k+1)^2 * (k+2) * (n-k+1)));
    vector(33, N, my(n=N-1); sum(j=0,n, f(j) * C(n,j)^2 ) )
    \\ Joerg Arndt, Feb 18 2015

Formula

a(n) = sum(j=0, n, C(n,j)^2 * A005802(j)).
a(n) = sum(j=0, n, C(n,j)^2 * (1/((j+1)^2 (j+2))) * sum(i=0, j, C(2*i,i) * C(j+1,i+i) * C(j+2,i+1))) where C(n,j) = n!/(j!(n-j)!).
Recurrence: (n+2)^3*(3*n+1)*a(n) = 2*(30*n^4 + 67*n^3 + 29*n^2 - 10*n - 8)*a(n-1) - 64*(n-1)^2*n*(3*n+4)*a(n-2). - Vaclav Kotesovec, Feb 18 2015
a(n) ~ 2^(4*n+5) / (Pi^(3/2) * n^(9/2)). - Vaclav Kotesovec, Feb 18 2015

Extensions

Added more terms, Joerg Arndt, Feb 18 2015