A145846 Number of permutations of length 2n which are invariant under the reverse-complement map and have no decreasing subsequences of length 6.
1, 2, 8, 47, 357, 3270, 34515, 406460, 5215829, 71677058, 1041363040, 15841778155, 250494079945, 4093630537014, 68830515423498, 1186424966652225, 20902566718237725, 375485138838707850, 6863181435514906992, 127420716337372828539, 2399321143670605041105
Offset: 0
Keywords
Programs
-
Mathematica
Table[Sum[ Binomial[n, j]^2*((1/(n - j + 1))* Binomial[2*(n - j), n - j]/((j + 1)^2*(j + 2)))* Sum[Binomial[2*i, i]*Binomial[j + 1, i + 1]* Binomial[j + 2, i + 1], {i, 0, j}], {j, 0, n}], {n, 0, 20}]
Formula
Recurrence: (n+2)^2*(n+3)^2*(64*n^3 + 96*n^2 - 36*n - 79)*a(n) = (2240*n^7 + 13664*n^6 + 26068*n^5 + 7303*n^4 - 27638*n^3 - 20581*n^2 + 5964*n + 5940)*a(n-1) - (n-1)^2*(16576*n^5 + 61344*n^4 + 25556*n^3 - 84501*n^2 - 46860*n - 15300)*a(n-2) + 225*(n-2)^2*(n-1)^2*(64*n^3 + 288*n^2 + 348*n + 45)*a(n-3). - Vaclav Kotesovec, Feb 18 2015
a(n) ~ 5^(2*n+13/2) / (128 * Pi^2 * n^6). - Vaclav Kotesovec, Feb 18 2015
Extensions
More terms from Vaclav Kotesovec, Feb 18 2015