cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145847 Number of involutions of length 2n which are invariant under the reverse-complement map and have no decreasing subsequences of length 6.

Original entry on oeis.org

1, 2, 6, 19, 67, 246, 947, 3746, 15213, 62950, 264920, 1129965, 4877215, 21262918, 93522756, 414532163, 1850047621, 8307290058, 37507875950, 170191051327, 775719275151, 3550191976022, 16309030657001, 75179696666964, 347658070586857, 1612424809368446
Offset: 0

Views

Author

Eric S. Egge, Oct 21 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[ Binomial[n, j]*Binomial[n - j, Floor[(n - j)/2]]* Sum[Binomial[j, 2*i]*Binomial[2*i, i]/(i + 1), {i, 0, Floor[j/2]}], {j, 0, n}], {n, 0, 20}]

Formula

a(n) = Sum_{j=0..n} binomial(n,j)*A001006(j)*A001405(n-j).
Recurrence: (n+2)*(n+3)*(8*n+7)*a(n) = 3*(8*n^3 + 39*n^2 + 51*n + 22)*a(n-1) + (n-1)*(104*n^2 + 155*n - 30)*a(n-2) - 15*(n-2)*(n-1)*(8*n+15)*a(n-3). - Vaclav Kotesovec, Feb 18 2015
a(n) ~ 5^(n+2) / (2*Pi*n^2). - Vaclav Kotesovec, Feb 18 2015

Extensions

More terms from Vaclav Kotesovec, Feb 18 2015