A145870 Number of involutions of length 2n which are invariant under the reverse-complement map and have no decreasing subsequences of length 8.
1, 2, 6, 20, 75, 301, 1287, 5762, 26875, 129520, 642452, 3264834, 16950089, 89646090, 482012650, 2629809994, 14537429823, 81313943942, 459705628930, 2624247237560, 15113949789357, 87755911422989, 513357330465591, 3023830805847910, 17925386942479025
Offset: 0
Keywords
Programs
-
Mathematica
Array[Cat, 21, 0]; For[i = 0, i < 21, ++i, Cat[i] = (1/(i + 1))*Binomial[2*i, i]]; Array[Mot, 21, 0]; For[i = 0, i < 21, ++i, Mot[i] = Sum[Binomial[i, 2*j]*Cat[j], {j, 0, Floor[i/2]}]]; Table[Sum[ Binomial[n, j]*Cat[Floor[(j + 1)/2]]*Cat[Ceiling[(j + 1)/2]]* Mot[n - j], {j, 0, n}], {n, 0, 15}]
Formula
a(n) = Sum_{j=0..n} C(n,j) * A000108(floor((j+1)/2)) * A000108(ceiling((j+1)/2)) * A001006(n-j), where C(n,j) = n!/(j!*(n-j)!), A000108(n) = Catalan(n) and A001006(n) = Motzkin(n).
From Vaclav Kotesovec, Feb 18 2015: (Start)
Recurrence: (n+3)*(n+5)*(n+6)*(192*n^2 + 992*n + 1321)*a(n) = 4*(192*n^5 + 3392*n^4 + 21897*n^3 + 64596*n^2 + 84418*n + 35925)*a(n-1) + 2*(n-1)*(3264*n^4 + 28000*n^3 + 74185*n^2 + 47329*n - 41250)*a(n-2) - 4*(n-2)*(n-1)*(3648*n^3 + 30272*n^2 + 73819*n + 38895)*a(n-3) - 105*(n-3)*(n-2)*(n-1)*(192*n^2 + 1376*n + 2505)*a(n-4).
a(n) ~ 7^(n+9/2) / (4 * Pi^(3/2) * n^(9/2)). (End)
Extensions
More terms from Vaclav Kotesovec, Feb 18 2015
Comments