cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145870 Number of involutions of length 2n which are invariant under the reverse-complement map and have no decreasing subsequences of length 8.

Original entry on oeis.org

1, 2, 6, 20, 75, 301, 1287, 5762, 26875, 129520, 642452, 3264834, 16950089, 89646090, 482012650, 2629809994, 14537429823, 81313943942, 459705628930, 2624247237560, 15113949789357, 87755911422989, 513357330465591, 3023830805847910, 17925386942479025
Offset: 0

Views

Author

Eric S. Egge, Oct 22 2008

Keywords

Comments

a(n) is also the number of involutions of length 2n+1 which are invariant under the reverse-complement map and have no decreasing subsequences of length 8.

Crossrefs

Programs

  • Mathematica
    Array[Cat, 21, 0];
    For[i = 0, i < 21, ++i, Cat[i] = (1/(i + 1))*Binomial[2*i, i]];
    Array[Mot, 21, 0];
    For[i = 0, i < 21, ++i, Mot[i] = Sum[Binomial[i, 2*j]*Cat[j], {j, 0, Floor[i/2]}]];
    Table[Sum[ Binomial[n, j]*Cat[Floor[(j + 1)/2]]*Cat[Ceiling[(j + 1)/2]]* Mot[n - j],
    {j, 0, n}], {n, 0, 15}]

Formula

a(n) = Sum_{j=0..n} C(n,j) * A000108(floor((j+1)/2)) * A000108(ceiling((j+1)/2)) * A001006(n-j), where C(n,j) = n!/(j!*(n-j)!), A000108(n) = Catalan(n) and A001006(n) = Motzkin(n).
From Vaclav Kotesovec, Feb 18 2015: (Start)
Recurrence: (n+3)*(n+5)*(n+6)*(192*n^2 + 992*n + 1321)*a(n) = 4*(192*n^5 + 3392*n^4 + 21897*n^3 + 64596*n^2 + 84418*n + 35925)*a(n-1) + 2*(n-1)*(3264*n^4 + 28000*n^3 + 74185*n^2 + 47329*n - 41250)*a(n-2) - 4*(n-2)*(n-1)*(3648*n^3 + 30272*n^2 + 73819*n + 38895)*a(n-3) - 105*(n-3)*(n-2)*(n-1)*(192*n^2 + 1376*n + 2505)*a(n-4).
a(n) ~ 7^(n+9/2) / (4 * Pi^(3/2) * n^(9/2)). (End)

Extensions

More terms from Vaclav Kotesovec, Feb 18 2015