cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145881 Triangle read by rows: T(n,k) is the number of even permutations of {1,2,...,n} with no fixed points and having k excedances (n>=1; k>=1).

Original entry on oeis.org

0, 0, 1, 1, 0, 3, 0, 1, 11, 11, 1, 0, 25, 80, 25, 0, 1, 57, 407, 407, 57, 1, 0, 119, 1680, 3815, 1680, 119, 0, 1, 247, 6211, 26917, 26917, 6211, 247, 1, 0, 501, 21432, 160053, 303504, 160053, 21432, 501, 0, 1, 1013, 70775, 852347, 2747009, 2747009, 852347, 70775
Offset: 1

Views

Author

Emeric Deutsch, Nov 06 2008

Keywords

Comments

Row n has n-1 entries (n>=2).
Sum of entries in row n = A000321(n).
Sum_{k=1..n-1} k*T(n,k) = A145887(n) (n>=2).

Examples

			T(4,2)=3 because the even derangements of {1,2,3,4} are 3412, 2143 and 4321.
Triangle starts:
  0;
  0;
  1,  1;
  0,  3,  0;
  1, 11, 11,  1;
  0, 25, 80, 25,  0;
		

Crossrefs

Programs

  • Maple
    G:=((1-t)*exp(-t*z)/(1-t*exp((1-t)*z))-(t*exp(-z)-exp(-t*z))/(1-t))*1/2: Gser:=simplify(series(G,z=0,15)): for n to 11 do P[n]:=sort(expand(factorial(n)*coeff(Gser,z,n))) end do: 0; for n to 11 do seq(coeff(P[n],t,j),j=1..n-1) end do; # yields sequence in triangular form

Formula

E.g.f.: ((1-t)*exp(-tz)/(1-t*exp((1-t)z)) - (t*exp(-z)-exp(-tz))/(1-t))/2.

Extensions

Formula corrected by Jon E. Schoenfield, Jul 21 2017 at the request of the author