A145881 Triangle read by rows: T(n,k) is the number of even permutations of {1,2,...,n} with no fixed points and having k excedances (n>=1; k>=1).
0, 0, 1, 1, 0, 3, 0, 1, 11, 11, 1, 0, 25, 80, 25, 0, 1, 57, 407, 407, 57, 1, 0, 119, 1680, 3815, 1680, 119, 0, 1, 247, 6211, 26917, 26917, 6211, 247, 1, 0, 501, 21432, 160053, 303504, 160053, 21432, 501, 0, 1, 1013, 70775, 852347, 2747009, 2747009, 852347, 70775
Offset: 1
Examples
T(4,2)=3 because the even derangements of {1,2,3,4} are 3412, 2143 and 4321. Triangle starts: 0; 0; 1, 1; 0, 3, 0; 1, 11, 11, 1; 0, 25, 80, 25, 0;
Links
- R. Mantaci and F. Rakotondrajao, Exceedingly deranging!, Advances in Appl. Math., 30 (2003), 177-188.
Programs
-
Maple
G:=((1-t)*exp(-t*z)/(1-t*exp((1-t)*z))-(t*exp(-z)-exp(-t*z))/(1-t))*1/2: Gser:=simplify(series(G,z=0,15)): for n to 11 do P[n]:=sort(expand(factorial(n)*coeff(Gser,z,n))) end do: 0; for n to 11 do seq(coeff(P[n],t,j),j=1..n-1) end do; # yields sequence in triangular form
Formula
E.g.f.: ((1-t)*exp(-tz)/(1-t*exp((1-t)z)) - (t*exp(-z)-exp(-tz))/(1-t))/2.
Extensions
Formula corrected by Jon E. Schoenfield, Jul 21 2017 at the request of the author
Comments