This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145883 #22 Oct 03 2024 05:40:28 %S A145883 0,1,2,1,6,6,12,36,12,28,155,147,29,1,56,605,1208,586,64,1,120,2160, %T A145883 7800,7800,2160,120,240,7320,44160,78000,44160,7320,240,496,23947, %U A145883 227623,655039,655315,227569,23893,517,1,992,76305,1102068,4868556 %N A145883 Triangle read by rows: T(n,k) is the number of odd permutations of {1,2,...,n} having k descents. (n>=1, k>=1). %C A145883 Number of entries in row n is ceiling(binomial(n,2)/2) - ceiling(binomial(n-2,2)/2). %C A145883 Sum of entries in row n is A001710(n) for n>=2. %H A145883 Alois P. Heinz, <a href="/A145883/b145883.txt">Rows n = 1..143, flattened</a> %H A145883 J. Shareshian and M. L. Wachs, <a href="https://doi.org/10.1090/S1079-6762-07-00172-2">q-Eulerian polynomials: excedance number and major index</a>, Electronic Research Announcements of the Amer. Math. Soc., 13 (2007), 33-45. %H A145883 R. P. Stanley, <a href="http://dx.doi.org/10.1016/0097-3165(76)90028-5">Binomial posets, Möbius inversion and permutation enumeration</a>, J. Combinat. Theory, A 20 (1976), 336-356. %H A145883 S. Tanimoto, <a href="http://www.emis.de/journals/INTEGERS/papers/g31/g31.Abstract.html">A study of Eulerian numbers for permutations in the alternating group</a>, Integers, Electronic J. of Combinatorial Number Theory, 6 (2006), #A31. %F A145883 In the Shareshian and Wachs reference (p. 35) a q-analog of the exponential g.f. of the Eulerian polynomials is given for the joint distribution of (inv, des) (see also the Stanley reference). The first Maple program given below makes use of this function by considering its odd part. %F A145883 T(n,k) = (euler(n,k) - Sum_{j=max(0, k+1-ceiling(n/2))..min(floor(n/2), k)} binomial(j-1-floor(n/2), j) * euler(ceiling(n/2), k-j)) / 2, where euler(n,k) is the Eulerian number A173018 (not A008292, which has different indexing). - _Robert A. Russell_, Nov 16 2018 %e A145883 T(4,2) = 6 because we have 1432, 3142, 3214, 4312, 4231 and 3421. %e A145883 Triangle begins with T(1,1): %e A145883 0 %e A145883 1 %e A145883 2 1 %e A145883 6 6 %e A145883 12 36 12 %e A145883 28 155 147 29 1 %e A145883 56 605 1208 586 64 1 %e A145883 120 2160 7800 7800 2160 120 %e A145883 240 7320 44160 78000 44160 7320 240 %e A145883 496 23947 227623 655039 655315 227569 23893 517 1 %e A145883 992 76305 1102068 4868556 7862124 4869558 1101420 76332 1044 1 %p A145883 for n to 11 do qbr := proc (m) options operator, arrow; sum(q^i, i = 0 .. m-1) end proc; qfac := proc (m) options operator, arrow; product(qbr(j), j = 1 .. m) end proc; Exp := proc (z) options operator, arrow; sum(q^binomial(m, 2)*z^m/qfac(m), m = 0 .. 19) end proc; g := (1-t)/(Exp(z*(t-1))-t); gser := simplify(series(g, z = 0, 17)); a[n] := simplify(qfac(n)*coeff(gser, z, n)); b[n] := (a[n]-subs(q = -q, a[n]))*1/2; P[n] := sort(subs(q = 1, b[n])) end do; 0; for n to 11 do seq(coeff(P[n], t, j), j = 1 .. ceil((1/2)*binomial(n, 2))-ceil((1/2)*binomial(n-2, 2))) end do; # yields sequence in triangular form %p A145883 # second Maple program: %p A145883 b:= proc(u, o, t) option remember; `if`(u+o=0, t, expand( %p A145883 add(b(u+j-1, o-j, irem(t+j-1+u, 2)), j=1..o)+ %p A145883 add(b(u-j, o+j-1, irem(t+u-j, 2))*x, j=1..u))) %p A145883 end: %p A145883 T:= n->`if`(n=1, 0, (p->seq(coeff(p, x, i), i=1..degree(p))) %p A145883 (add(b(j-1, n-j, irem(j+1, 2)), j=1..n))): %p A145883 seq(T(n), n=1..12); # _Alois P. Heinz_, Nov 19 2013 %t A145883 b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, t, Expand[Sum[b[u+j-1, o-j, Mod[t+j-1+u, 2]], {j, 1, o}] + Sum[b[u-j, o+j-1, Mod[t+u-j, 2]]*x, {j, 1, u}]]]; T[n_] := If[n == 1, 0, Function[{p}, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][Sum[ b[j-1, n-j, Mod[j+1, 2]], {j, 1, n}]]]; Table[T[n], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, May 28 2015, after _Alois P. Heinz_ *) %t A145883 Needs["Combinatorica`"]; %t A145883 Join[{0}, Table[(Eulerian[n, k] - Sum[Binomial[j-1-Floor[n/2], j] Eulerian[Ceiling[n/2], k-j], {j, Max[0, k+1-Ceiling[n/2]], Min[Floor[n/2], k]}])/2, {n, 2, 15}, {k, 1, n}] // Flatten // DeleteCases[0]] (* _Robert A. Russell_, Nov 16 2018 *) %Y A145883 Cf. A001710, A145882. %K A145883 nonn,tabf %O A145883 1,3 %A A145883 _Emeric Deutsch_, Nov 11 2008