cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145886 Number of excedances in all odd permutations of {1,2,...,n} with no fixed points.

Original entry on oeis.org

0, 1, 0, 12, 50, 405, 3234, 29680, 300348, 3337425, 40382540, 528644556, 7445076990, 112248853717, 1803999433950, 30788257007040, 556112892188504, 10598857474652865, 212565974908314168, 4475073155964510700
Offset: 1

Views

Author

Emeric Deutsch, Nov 06 2008

Keywords

Examples

			a(4)=12 because the odd derangements of {1,2,3,4} are 4123, 3142, 4312, 2413, 2341 and 3421, having 1, 2, 2, 2, 3 and 2, excedances, respectively.
		

Crossrefs

Programs

  • Maple
    G:=(1/4)*z^2*(2-2*z+z^2)*exp(-z)/(1-z)^2: Gser:=series(G,z=0,30): seq(factorial(n)*coeff(Gser,z,n),n=1..21);
  • Mathematica
    Rest[CoefficientList[Series[1/4*x^2*(2-2*x+x^2)*E^(-x)/(1-x)^2, {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Oct 07 2013 *)

Formula

E.g.f.: (1/4)*z^2*(2-2*z+z^2)*exp(-z)/(1-z)^2.
a(n) = Sum_{k=1..n-1} k * A145880(n,k), n>=2.
a(n) ~ n!*exp(-1)*n/4. - Vaclav Kotesovec, Oct 07 2013
D-finite with recurrence +(-3*n+7)*a(n) +(3*n+2)*(n-3)*a(n-1) +(3*n^2-n+16)*a(n-2) +(3*n^2-23*n+32)*a(n-3) +(3*n-5)*(n-3)*a(n-4)=0. - R. J. Mathar, Jul 26 2022