cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145890 Triangle read by rows: T(n,k) = B(k)C(n-k), where B(j) is the central binomial coefficient binomial(2j,j) (A000984) and C(j) is the Catalan number binomial(2j,j)/(j+1) (A000108); 0 <= k <= n.

Original entry on oeis.org

1, 1, 2, 2, 2, 6, 5, 4, 6, 20, 14, 10, 12, 20, 70, 42, 28, 30, 40, 70, 252, 132, 84, 84, 100, 140, 252, 924, 429, 264, 252, 280, 350, 504, 924, 3432, 1430, 858, 792, 840, 980, 1260, 1848, 3432, 12870, 4862, 2860, 2574, 2640, 2940, 3528, 4620, 6864, 12870, 48620
Offset: 0

Views

Author

Emeric Deutsch, Nov 22 2008

Keywords

Comments

Sum of entries in row n is (1/2)binomial(2n+2,n+1) = A001700(n).
T(n,0) = binomial(2n,n)/(n+1) = A000108(n) (the Catalan numbers).
T(n,n) = binomial(2n,n) = A000984(n) (the central binomial coefficients).

Examples

			Triangle starts:
   1;
   1,  2;
   2,  2,  6;
   5,  4,  6, 20;
  14, 10, 12, 20, 70;
		

Crossrefs

Programs

  • Maple
    b:=proc(n) options operator, arrow: binomial(2*n,n) end proc: c:=proc(n) options operator, arrow: binomial(2*n, n)/(n+1) end proc: T:=proc(n,k) if k <= n then b(k)*c(n-k) else 0 end if end proc: for n from 0 to 8 do seq(T(n,k), k =0..n) end do; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] /; 0 <= k <= n := Binomial[2k, k]*Binomial[2n - 2k, n-k]/(n-k+1);
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 23 2024 *)

Formula

T(n,k) = binomial(2k,k)*binomial(2n-2k,n-k)/(n-k+1) (0 <= k <= n).
G.f. = G(t,x) = (1-sqrt(1-4x))/(2x*sqrt(1-4tx)).