A145897 Starting prime (and 1): where number of consecutive squares m^2 satisfy r=p+4*m^2, prime.
1, 7, 13, 19, 37, 43, 67, 79, 97, 103, 109, 127, 163, 193, 223, 229, 277, 307, 313, 349, 379, 397, 439, 457, 463, 487, 499, 613, 643, 673, 739, 757, 769, 823, 853, 859, 877, 883, 907, 937, 967, 1009, 1087, 1093, 1213, 1279, 1297, 1303, 1423, 1429, 1447, 1483
Offset: 1
Examples
a(1)=1 because when there are 3 consecutive m^2, first prime is 5 and ending prime is 37: r=1+4*1^1=5, prime; and r=1+4*2^2=17, prime; and r=1+4*3^2=37, prime (and the next value of r does not produce a prime).
Programs
-
UBASIC
10 'p464 20 N=1 30 A=3:S=sqrt(N) 40 B=N\A 50 if B*A=N then 100 60 A=A+2 70 if A<=S then 40 80 M=M+1:R=N+4*M^2:if R=prmdiv(R) and M<100 then print N;R;M:goto 80 90 if M>=1 then stop 100 M=0:N=N+2:goto 30
Comments