A145898 Ending prime: where number of consecutive squares m^2 satisfy r = p + 4*m^2, prime.
37, 151, 29, 23, 293, 107, 263, 83, 113, 107, 113, 131, 1607, 197, 239, 233, 313, 311, 317, 353, 383, 401, 443, 461, 499, 523, 503, 617, 659, 677, 743, 773, 773, 887, 857, 863, 881, 887, 911, 953, 983, 1013, 1283, 1129, 1277, 1283, 1301, 1319, 1619, 1433
Offset: 1
Examples
a(1)=37 because when m is 3, the first prime is 5 and the ending prime is 37: r=1+4*1^1=5, prime; and r=1+4*2^2=17, prime; and r=1+4*3^2=37, prime (and the next value of r does not produce a prime).
Programs
-
UBASIC
10 'p464 20 N=1 30 A=3:S=sqrt(N) 40 B=N\A 50 if B*A=N then 100 60 A=A+2 70 if A<=S then 40 80 M=M+1:R=N+4*M^2:if R=prmdiv(R) and M<100 then print N;R;M:goto 80 90 if M>=1 then stop 100 M=0:N=N+2:goto 30
Comments