This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145911 #19 Mar 12 2022 10:28:49 %S A145911 0,1,1,2,10,5,7,28,4,5,55,22,26,91,35,40,136,17,19,190,70,77,253,92, %T A145911 100,325,39,42,406,145,155,496,176,187,595,70,74,703,247,260,820,287, %U A145911 301,946,110,115,1081,376,392,1225,425,442,1378 %N A145911 a(n) = A145909(n)/8. %H A145911 G. C. Greubel, <a href="/A145911/b145911.txt">Table of n, a(n) for n = 0..5000</a> %H A145911 <a href="/index/Rec#order_27">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,-3,0,0,0,0,0,0,0,0,1). %F A145911 a(n) = A106619(n)*A106619(n+1). %p A145911 A061039:= proc(n) numer(1/9-1/n^2) ; end proc: %p A145911 A145909:= proc(n) ; A061039(6*n+3); end proc: %p A145911 A145911:= proc(n) ; A145909(n)/8; end proc: %p A145911 seq(A145911(n),n=0..80) ; # _R. J. Mathar_, Jan 06 2011 %t A145911 Numerator[(1/9)*(1 -1/(2*Range[0, 75] +1)^2)]/8 (* _G. C. Greubel_, Mar 12 2022 *) %o A145911 (Sage) [numerator((1/9)*(1 - 1/(2*n+1)^2))/8 for n in (0..75)] # _G. C. Greubel_, Mar 12 2022 %Y A145911 Cf. A061039, A106619, A145909. %K A145911 nonn,easy %O A145911 0,4 %A A145911 _Paul Curtz_, Oct 24 2008