This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145917 #26 Mar 22 2025 18:49:52 %S A145917 0,-4,1,-8,-3,4,-12,-7,0,9,-16,-11,-4,5,16,-20,-15,-8,1,12,25,-24,-19, %T A145917 -12,-3,8,21,36,-28,-23,-16,-7,4,17,32,49,-32,-27,-20,-11,0,13,28,45, %U A145917 64,-36,-31,-24,-15,-4,9,24,41,60,81,-40,-35,-28,-19,-8,5,20,37,56,77,100 %N A145917 Triangle read by rows: to get n-th row, start with -4n and successively add 5, 7, 9, 11, 13, ... until reaching a square. %C A145917 Row n has n+1 entries. %C A145917 T(n,k) is the discriminant of the quadratic equation x^2+n*x+k=0. - _Boris Putievskiy_, Jan 11 2013 %H A145917 Boris Putievskiy, <a href="/A145917/b145917.txt">Rows n = 1..140 of triangle, flattened</a> %H A145917 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations (of) Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012. %F A145917 From _Boris Putievskiy_, Jan 11 2013: (Start) %F A145917 T(n,k) = n^2-4*k, n, k >= 0 array read by antidiagonals. %F A145917 a(n) = (A002260(n)-1)^2 - 4*(A004736(n)-1), n >0. %F A145917 a(n) = (i-1)^2-4(j-1), n>0, where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, and t = floor((-1+sqrt(8*n-7))/2). (End) %e A145917 As a triangle: %e A145917 0; %e A145917 -4, 1; %e A145917 -8, -3, 4; %e A145917 -12, -7, 0, 9; %e A145917 -16, -11, -4, 5, 16; %e A145917 -20, -15, -8, 1, 12, 25; %e A145917 ... %e A145917 As an array: %e A145917 0 -4 -8 -12 -16 -20 -24 %e A145917 1 -3 -7 -11 -15 -19 -23 %e A145917 4 0 -4 -8 -12 -16 -20 %e A145917 9 5 1 -3 -7 -11 -15 %e A145917 16 12 8 4 0 -4 -8 %e A145917 25 21 17 13 9 5 1 %e A145917 36 32 28 24 20 16 12 %K A145917 tabl,sign %O A145917 0,2 %A A145917 Jared Ricks (jaredricks(AT)yahoo.com), Oct 24 2008