cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145920 List of numbers that are both pentagonal (A000326) and binomial coefficients C(n,4) (A000332).

This page as a plain text file.
%I A145920 #22 Feb 16 2025 08:33:09
%S A145920 0,1,5,35,70,210,330,715,1001,1820,2380,3876,4845,7315,8855,12650,
%T A145920 14950,20475,23751,31465,35960,46376,52360,66045,73815,91390,101270,
%U A145920 123410,135751,163185,178365,211876,230300,270725,292825,341055,367290,424270
%N A145920 List of numbers that are both pentagonal (A000326) and binomial coefficients C(n,4) (A000332).
%C A145920 All binomial coefficients C(n,4) belong to the generalized pentagonal sequence (A001318).
%C A145920 Pentagonal numbers of generalized pentagonal number (A001318) index number. - _Raphie Frank_, Nov 25 2012
%H A145920 William A. Tedeschi, <a href="/A145920/b145920.txt">Table of n, a(n) for n = 1..10000</a>
%H A145920 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentagonalNumber.html">Pentagonal Number</a>.
%H A145920 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentatopeNumber.html">Pentatope Number</a>.
%F A145920 a(n+1) = A000326 (A001318(n)).
%F A145920 Positive values of A000332(n) belong to the sequence if and only if 3 does not divide n. A000332(n) is positive when n>3.
%F A145920 Conjecture: a(n) = a(n-1) + 4a(n-2) - 4a(n-3) - 6a(n-4) + 6a(n-5) + 4a(n-6) - 4a(n-7) - a(n-8) + a(n-9). - _R. J. Mathar_, Oct 29 2008
%F A145920 Conjecture: G.f.: x^2(1 + 4x + 26x^2 + 19x^3 + 4x^5 + x^6 + 26x^4)/((1+x)^4(1-x)^5). - _R. J. Mathar_, Oct 29 2008
%F A145920 a(n) = (27x^4 - 18x^3 - 3x^2 + 2x)/8 where x = floor(n/2)*(-1)^n, for n >= 1. - _William A. Tedeschi_, Aug 16 2010
%e A145920 35, for example, is both A000326(5) and A000332(7).
%Y A145920 Cf. A141919, of which this is a subsequence.
%K A145920 easy,nonn
%O A145920 1,3
%A A145920 _Matthew Vandermast_, Oct 28 2008