This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145960 #32 Feb 16 2025 08:33:09 %S A145960 1,0,2,1,6,5,1,2,4,7,5,3,1,9,8,1,3,6,6,4,1,1,0,2,8,1,9,2,6,0,7,3,2,3, %T A145960 8,6,9,7,5,6,2,2,1,5,9,2,8,9,1,5,3,6,5,4,0,3,5,5,9,0,7,1,1,5,6,7,3,3, %U A145960 6,9,3,8,8,9,7,8,0,9,7,5,9,5,5,1,3,0,3,6,2,4,6,5,5,8,8,9,5,0,4,4 %N A145960 Decimal expansion of 2*log(5/3) used in BBP Pi formula. %C A145960 BBP formula for Pi = 4*A145963 - (1/2)*A145960 - (1/2)*(A145961-A145962). %H A145960 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BBPFormula.html">BBP Formula</a> %H A145960 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A145960 Equals 2*log(5/3) = 2*(log(5)-log(3)) = 2*(A016628 - A002391) = log(25/9) = 4*arctanh(1/4). %F A145960 Equals Hypergeometric2F1(1, 1/2, 3/2, 1/16). %F A145960 Equals Sum_{k>=0} (1/16)^k*(1/(2k+1)). %e A145960 1.021651247531981366411... %t A145960 First[RealDigits[2 Log[5/3], 10, 100]] %o A145960 (PARI) 2*log(5/3) \\ _Michel Marcus_, Apr 05 2015 %Y A145960 Cf. A000796, A145961, A145962, A145963. %K A145960 cons,nonn %O A145960 1,3 %A A145960 _Artur Jasinski_, Oct 25 2008