cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145963 Decimal expansion of Hypergeometric2F1[1, 1/8, 9/8, 1/16] used in BBP Pi formula.

This page as a plain text file.
%I A145963 #22 Feb 16 2025 08:33:09
%S A145963 1,0,0,7,1,8,4,4,7,6,4,1,4,6,7,6,2,2,8,6,4,4,7,6,0,1,4,7,4,5,0,4,3,8,
%T A145963 4,9,6,6,4,2,9,6,5,4,7,1,9,4,5,8,8,3,1,1,3,7,1,6,4,3,6,2,0,3,1,7,2,3,
%U A145963 5,2,3,9,0,3,8,0,8,9,8,1,6,3,5,2,7,8,6,8,9,4,4,2,8,9,5,8,5,9,4,9
%N A145963 Decimal expansion of Hypergeometric2F1[1, 1/8, 9/8, 1/16] used in BBP Pi formula.
%C A145963 BBP formula for Pi = 4*A145963 - (1/2)*A145960 - (1/2)*A145961 - A145962.
%H A145963 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BBPFormula.html">BBP Formula</a>.
%F A145963 Equals Sum_{k>=0} (1/16)^k / (8*k+1).
%e A145963 1.00718447641467622864476...
%t A145963 First[RealDigits[Hypergeometric2F1[1, 1/8, 9/8, 1/16], 10, 100]]
%t A145963 N[(1/16) (Pi + 2 Sqrt[2] (2 ArcCoth[Sqrt[2]] + ArcTan[2 Sqrt[2]]) + 2 ArcTan[3/4] + 2 Log[5]), 100]
%t A145963 N[Sum[(1/16)^n (1/(8n+1)),{n,0,Infinity}], 100]
%o A145963 (PARI) suminf(k=0, (1/16)^k / (8*k+1)) \\ _Michel Marcus_, Jan 16 2021
%Y A145963 Cf. A000796, A145960, A145961, A145962.
%K A145963 cons,nonn
%O A145963 1,4
%A A145963 _Artur Jasinski_, Oct 25 2008