This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145986 #18 Jul 14 2024 12:31:42 %S A145986 5,17,101,409,2633,11657,11677,11681,11689,373777,766373,3358373, %T A145986 12205121,12270281,12270301,12270317,297388097,297779509,297779513, %U A145986 1113443473,1113443521,1113443533,1113443549,1113443561,84676453373,84676453429 %N A145986 n-th prime in the first occurrence of at least n consecutive primes of the form 4k + 1. %C A145986 a(1)=5 is same as A055623(1) because 5 is a single-digit number. %D A145986 Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007, pp. 30-31. ISBN 978-1-885794-24-6 %e A145986 a(2)=17 because this is the 2nd prime in the first run of 2 primes where p == 1 mod 4. %t A145986 Flatten[Table[SequencePosition[Table[If[Mod[p-1,4]==0,1,0],{p,Prime[Range[250000]]}],PadRight[ {},n,1],1],{n,12}],1][[;;,-1]]//Prime (* The program generates the first 12 terms of the sequence. *) (* _Harvey P. Dale_, Jul 14 2024 *) %o A145986 (UBASIC) 10 'cluster primes %o A145986 20 C=1:input "end #";L %o A145986 40 for N=3 to L step 2 %o A145986 50 S=int(sqrt(N)) %o A145986 60 for A=3 to S step 2 %o A145986 70 B=N/A %o A145986 80 if int(B)*A=N then cancel for:goto 170 %o A145986 90 next A %o A145986 100 C=C+1: E=int(N/4):R=N-(4*E) %o A145986 120 if R=1 then print N;:C1=C1+1:T1=T1+1:print T1 %o A145986 130 if R=3 then T1=0:print " ";N;:C3=C3+1:T2=T2+1:print T2 %o A145986 150 if R=1 then T2=0 %o A145986 160 if T1>10 or T2>10 then stop %o A145986 170 next %o A145986 180 print "Total primes=";C;:print "Type A:";C1;" Type B:";C3 %o A145986 (PARI) r=0;c=0;forprime(p=2,4e9,if(p%4==1,if(c++>r,r=c;print1(p", ")),c=0)) \\ _Charles R Greathouse IV_, Mar 22 2011 %Y A145986 Cf. A055623, A054624, A145988, A145989, A145990, A145991, A145992, A145993, A145994. %K A145986 nonn %O A145986 1,1 %A A145986 _Enoch Haga_, Oct 26 2008 %E A145986 Entry rewritten and a(13)-a(26) added by _Charles R Greathouse IV_, Mar 22 2011 %E A145986 Edited by _M. F. Hasler_, May 02 2015 %E A145986 Definition clarified by _N. J. A. Sloane_, Dec 18 2022