This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A145990 #15 May 04 2019 00:36:57 %S A145990 13,37,89,109,193,229,277,313,349,389,449,509,613,661,701,757,797,853, %T A145990 877,929,997,1093,1109,1193,1237,1297,1373,1429,1489,1549,1597,1609, %U A145990 1637,1669,1709,1733,1789,1873,1889,1933,1993,2069,2113,2137,2153,2213,2269 %N A145990 Primes which start a run of at least length 2 of consecutive primes == 1 (mod 4). %D A145990 Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007, pp. 30-31. ISBN 978-1-885794-24-6 %H A145990 Harvey P. Dale, <a href="/A145990/b145990.txt">Table of n, a(n) for n = 1..1000</a> %e A145990 a(1)=13 because this sequence includes consecutive runs of any length and this first term > 1 in a run of 2 is 13. %p A145990 for i from 2 to 300 do %p A145990 if (ithprime(i) mod 4) = 1 and ithprime(i-1) mod 4 <> 1 and ithprime(i+1) mod 4 = 1 then %p A145990 printf("%d,",ithprime(i)) ; %p A145990 end if; %p A145990 end do: # _R. J. Mathar_, Sep 30 2011 %t A145990 Prime[#+1]&/@(SequencePosition[Table[If[Mod[n,4]==1,1,0],{n,Prime[ Range[ 350]]}],{0,1,1},Overlaps->False][[All,1]]) (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Aug 02 2017 *) %o A145990 (UBASIC) %o A145990 10 'cluster primes %o A145990 20 C=1 %o A145990 30 input "end #";L %o A145990 40 for N=3 to L step 2 %o A145990 50 S=int(sqrt(N)) %o A145990 60 for A=3 to S step 2 %o A145990 70 B=N/A %o A145990 80 if int(B)*A=N then cancel for:goto 170 %o A145990 90 next A %o A145990 100 C=C+1 %o A145990 110 E=N/4:E=int(E):R=N-(4*E) %o A145990 120 if R=1 then print N;:C1=C1+1:T1=T1+1:print T1 %o A145990 130 if R=3 then T1=0 %o A145990 140 if R=3 then print " ";N;:C3=C3+1:T2=T2+1:print T2 %o A145990 150 if R=1 then T2=0 %o A145990 160 if T1>10 or T2>10 then stop %o A145990 170 next %o A145990 180 print "Total primes=";C;:print "Type A";C1;"Type B";C3 %Y A145990 Cf. A039702, A055623, A054624, A145986, A145988 - A145994. %K A145990 easy,nonn %O A145990 1,1 %A A145990 _Enoch Haga_, Oct 26 2008 %E A145990 Corrected and extended by _Harvey P. Dale_, Aug 02 2017